Benjamin Lipp

PhD Defence on June 28, 2022

My PhD defence « Mechanized Cryptographic Proofs of Protocols and their Link with Verified Implementations » was held on Tuesday, June 28 at 2pm in room Gilles Kahn 1&2 on the ground floor of Inria Paris. The presentation was in English. Afterwards, there was a reception just outside of the Inria building. It was possible to attend the defence remotely.

The defence was streamed on Twitch. A recording might be made available shortly. Slides.


Final version of the thesis. See this entry on Inria’s repository for citation information:


Cryptographic protocols are one of the foundations for the trust people put in computer systems nowadays, be it online banking, any web or cloud services, or secure messaging. One of the best theoretical assurances for cryptographic protocol security is reached through proofs in the computational model. Writing such proofs is prone to subtle errors that can lead to invalidation of the security guarantees and, thus, to undesired security breaches. Proof assistants strive to improve this situation, have got traction, and have increasingly been used to analyse important real-world protocols and to inform their development. Writing proofs using such assistants requires a substantial amount of work. It is an ongoing endeavour to extend their scope through, for example, more automation and detailed modelling of cryptographic building blocks. This thesis shows on the example of the CryptoVerif proof assistant and two case studies, that mechanized cryptographic proofs are practicable and useful in analysing and designing complex real-world protocols.

The first case study is on the free and open source Virtual Private Network (VPN) protocol WireGuard that has recently found its way into the Linux kernel. We contribute proofs for several properties that are typical for secure channel protocols. Furthermore, we extend CryptoVerif with a model of unprecedented detail of the popular Diffie-Hellman group Curve25519 used in WireGuard.

The second case study is on the new Internet standard Hybrid Public Key Encryption (HPKE), that has already been picked up for use in a privacy-enhancing extension of the TLS protocol (ECH), and in the Messaging Layer Security secure group messaging protocol. We accompanied the development of this standard from its early stages with comprehensive formal cryptographic analysis. We provided constructive feedback that led to significant improvements in its cryptographic design. Eventually, we became an official co-author. We conduct a detailed cryptographic analysis of one of HPKE's modes, published at Eurocrypt 2021, an encouraging step forward to make mechanized cryptographic proofs more accessible to the broader cryptographic community.

The third contribution of this thesis is of methodological nature. For practical purposes, security of implementations of cryptographic protocols is crucial. However, there is frequently a gap between a cryptographic security analysis and an implementation that have both been based on a protocol specification: no formal guarantee exists that the two interpretations of the specification match, and thus, it is unclear if the executable implementation has the guarantees proved by the cryptographic analysis. In this thesis, we close this gap for proofs written in CryptoVerif and implementations written in F*. We develop cv2fstar, a compiler from CryptoVerif models to executable F* specifications using the HACL* verified cryptographic library as backend. cv2fstar translates non-cryptographic assumptions about, e.g., message formats, from the CryptoVerif model to F* lemmas. This allows to prove these assumptions for the specific implementation, further deepening the formal link between the two analysis frameworks. We showcase cv2fstar on the example of the Needham-Schroeder-Lowe protocol. cv2fstar connects CryptoVerif to the large F* ecosystem, eventually allowing to formally guarantee cryptographic properties on verified, efficient low-level code.