
Mechanized Cryptographic Proofs of Protocols
and their Link with Verified Implementations
Benjamin Lipp — PhD Defence

PhD Advisors: Bruno Blanchet, Karthikeyan Bhargavan
June 28, 2022

Inria Paris

Cryptology is a fascinating science, concerned with security and privacy of information,
communication, and computation in the presence of adversaries.

— adapted from iacr.org

1

https://www.iacr.org/

Cryptology is a fascinating science, concerned with security and privacy of information,
communication, and computation in the presence of adversaries.

— adapted from iacr.org

1

https://www.iacr.org/

Cryptographic Security

Strongest assurance for specification level of cryptosystems:
Provable Security

In practice: reduction proofs in the computational model.

2

Game-Based Proofs

Like in a board game:

• Participants:

Adversary, Alice, Bob, Client, Server

• Actions:

Encrypt, Reveal, Corrupt

• Winning Condition

We do not play the game, we reason about it!

encode security properties here

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

3

Game-Based Proofs

Like in a board game:

• Participants: Adversary

, Alice, Bob, Client, Server

• Actions:

Encrypt, Reveal, Corrupt

• Winning Condition

We do not play the game, we reason about it!

encode security properties here

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

3

Game-Based Proofs

Like in a board game:

• Participants: Adversary, Alice, Bob, Client, Server
• Actions:

Encrypt, Reveal, Corrupt

• Winning Condition

We do not play the game, we reason about it!

encode security properties here

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

3

Game-Based Proofs

Like in a board game:

• Participants: Adversary, Alice, Bob, Client, Server
• Actions: Encrypt, Reveal, Corrupt
• Winning Condition

We do not play the game, we reason about it!

encode security properties here

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

3

Game-Based Proofs

Like in a board game:

• Participants: Adversary, Alice, Bob, Client, Server
• Actions: Encrypt, Reveal, Corrupt
• Winning Condition

We do not play the game, we reason about it!

encode security properties here

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

3

Game-Based Proofs

Like in a board game:

• Participants: Adversary, Alice, Bob, Client, Server
• Actions: Encrypt, Reveal, Corrupt
• Winning Condition

We do not play the game, we reason about it!

encode security properties here

initial game

→ · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

3

Game-Based Proofs

Like in a board game:

• Participants: Adversary, Alice, Bob, Client, Server
• Actions: Encrypt, Reveal, Corrupt
• Winning Condition

We do not play the game, we reason about it!

encode security properties here

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games

→ · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

3

Game-Based Proofs

Like in a board game:

• Participants: Adversary, Alice, Bob, Client, Server
• Actions: Encrypt, Reveal, Corrupt
• Winning Condition

We do not play the game, we reason about it!

encode security properties here

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

3

Game-Based Proofs

Like in a board game:

• Participants: Adversary, Alice, Bob, Client, Server
• Actions: Encrypt, Reveal, Corrupt
• Winning Condition

We do not play the game, we reason about it!

encode security properties here

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

3

Critique I: Relevance to Real-World Systems

Common critique [Hv17]: Assumptions and abstractions are too far from reality!

Practice-Oriented Provable Security tries to find useful answers to:

• Which key size is secure?
• How many users should be allowed?

4

Critique I: Relevance to Real-World Systems

Common critique [Hv17]: Assumptions and abstractions are too far from reality!

Practice-Oriented Provable Security

tries to find useful answers to:

• Which key size is secure?
• How many users should be allowed?

4

Critique I: Relevance to Real-World Systems

Common critique [Hv17]: Assumptions and abstractions are too far from reality!

Practice-Oriented Provable Security tries to find useful answers to:

• Which key size is secure?
• How many users should be allowed?

4

Critique II: When is a proof convincing?

Bellare and Rogaway: many “essentially unverifiable” proofs, “crisis of rigor” [BR06]

Halevi: some reasons are social, but “our proofs are truly complex” [Hal05]

Call for “automated tools, that can help write and verify game-based proofs”.
— [Hal05; BR06]

5

Critique II: When is a proof convincing?

Bellare and Rogaway: many “essentially unverifiable” proofs, “crisis of rigor” [BR06]

Halevi: some reasons are social, but “our proofs are truly complex” [Hal05]

Call for “automated tools, that can help write and verify game-based proofs”.
— [Hal05; BR06]

5

Critique II: When is a proof convincing?

Bellare and Rogaway: many “essentially unverifiable” proofs, “crisis of rigor” [BR06]

Halevi: some reasons are social, but “our proofs are truly complex” [Hal05]

Call for “automated tools, that can help write and verify game-based proofs”.
— [Hal05; BR06]

5

Critique II: When is a proof convincing?

Bellare and Rogaway: many “essentially unverifiable” proofs, “crisis of rigor” [BR06]

Halevi: some reasons are social, but “our proofs are truly complex” [Hal05]

Call for “automated tools, that can help write and verify game-based proofs”.
— [Hal05; BR06]

5

Game-Based Proofs with the CryptoVerif Proof Assistant

encode security properties here

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

• CryptoVerif constructs a sequence of computationally indistinguishable games
• built-in proof strategy, and detailed guidance by user
• supports indistinguishability, secrecy, authentication properties
• computes exact security probability bound

6

Game-Based Proofs with the CryptoVerif Proof Assistant

encode security properties here

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

• CryptoVerif constructs a sequence of computationally indistinguishable games
• built-in proof strategy, and detailed guidance by user

• supports indistinguishability, secrecy, authentication properties
• computes exact security probability bound

6

Game-Based Proofs with the CryptoVerif Proof Assistant

encode security properties here

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

• CryptoVerif constructs a sequence of computationally indistinguishable games
• built-in proof strategy, and detailed guidance by user
• supports indistinguishability, secrecy, authentication properties
• computes exact security probability bound

6

Thesis Goals

Increase applicability and visibility of computer-aided proofs

Thesis Statement: Cryptographic proofs of practical usefulness are feasible using
automated proof assistants.

7

Outline

Part I. Case studies on real-world protocols.

• The Hybrid Public Key Encryption standard
• The WireGuard VPN protocol

Part II. Linking Cryptographic Proofs to Implementations.

• cv2fstar: translate CryptoVerif models to
executable F? specifications

8

Outline

Part I. Case studies on real-world protocols.

• The Hybrid Public Key Encryption standard
• The WireGuard VPN protocol

Part II. Linking Cryptographic Proofs to Implementations.

• cv2fstar: translate CryptoVerif models to
executable F? specifications

8

Part I: The Hybrid Public Key Encryption Standard

Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, and Doreen Riepel.
“Analysing the HPKE Standard”. EUROCRYPT 2021.

Richard L. Barnes, Karthik Bhargavan, Benjamin Lipp, and Christopher A. Wood. “Hybrid Public Key
Encryption”. RFC 9180. February 2022.

8

Hybrid Public Key Encryption (HPKE)

• Hybrid in the spirit of the KEM/DEM paradigm:
asymmetric building block as Key Encapsulation Mechanism,
symmetric building block as Data Encapsulation Mechanism

• RFC 9180 by the Crypto Forum Research Group (CFRG)
of the Internet Research Task Force (IRTF)

• Usage in TLS 1.3’s Encrypted Client Hello (ECH) extension, and
the Messaging Layer Security (MLS) group messaging protocol, amongst others.

• Requirements: modern crypto, provable security, test vectors, freely implementable.

9

Hybrid Public Key Encryption (HPKE)

• Hybrid in the spirit of the KEM/DEM paradigm:
asymmetric building block as Key Encapsulation Mechanism,
symmetric building block as Data Encapsulation Mechanism

• RFC 9180 by the Crypto Forum Research Group (CFRG)
of the Internet Research Task Force (IRTF)

• Usage in TLS 1.3’s Encrypted Client Hello (ECH) extension, and
the Messaging Layer Security (MLS) group messaging protocol, amongst others.

• Requirements: modern crypto, provable security, test vectors, freely implementable.

9

Hybrid Public Key Encryption (HPKE)

• Hybrid in the spirit of the KEM/DEM paradigm:
asymmetric building block as Key Encapsulation Mechanism,
symmetric building block as Data Encapsulation Mechanism

• RFC 9180 by the Crypto Forum Research Group (CFRG)
of the Internet Research Task Force (IRTF)

• Usage in TLS 1.3’s Encrypted Client Hello (ECH) extension, and
the Messaging Layer Security (MLS) group messaging protocol, amongst others.

• Requirements: modern crypto, provable security, test vectors, freely implementable.

9

HPKE Specifies Different APIs

• Single-Shot Encryption: encrypt one message

• Single-Shot Secret Export: provide one secret of (almost) arbitrary length

• Multi-Shot: multiple messages, and multiple secrets

10

HPKE Specifies Four Different Modes

receiver key pair sender key pair pre-shared key

Base y n n
Auth y y n
PSK y n y
AuthPSK y y y

11

Overview of the Construction

(Authenticated)
KEM
 KeySchedule

DEM

Key Derivation
Function

Encryption
Interface

Secret
Export

Interface

KEM shared
secret

key, b
ase nonce

exporter secret

PSK

plaintext

exporter context

(sender

private
 key)

receiver

public
key

KEM ciphertext

DEM ciphertext

12

Contributions to the HPKE Standard

1. Preliminary cryptographic analysis of all modes and interfaces leading to
• redesign of DHKEM and the key schedule such that DHKEM is CCA-secure on its own
• introduce proper oracle separation using labels

(Authenticated)
KEM
 KeySchedule

DEM

Key Derivation
Function

Encryption
Interface

Secret
Export

Interface

KEM shared
secret

key, b
ase nonce

exporter secret

PSK

plaintext

exporter context

(sender

private
 key)

receiver

public
key

KEM ciphertext

DEM ciphertext

13

Contributions to the HPKE Standard

2. Updating HPKE specification in the HACL? library
• has been upstreamed
• used to compute input parameter length limits, indicated in the RFC

14

Contributions to the HPKE Standard

3. Detailed cryptographic analysis of the Auth mode leading to
• composition theorems about Auth mode’s security
• with exact security bounds
• development of the nominal groups framework for modeling elliptic curves

15

Security Notions for AKEM and APKE

Chosen-Ciphertext Indistinguishability (CCA)
confidentiality of AKEM and APKE ciphertexts

Authenticity (Auth)
unforgeability of AKEM and APKE ciphertexts

Both of them in two variants:

Outsider adversary can choose from the honest key pairs when calling oracles,
no honest key pair is compromised

Insider adversary can provide sender or receiver secret key,
this is stronger than compromise of honestly generated key pairs

16

Security Notions for AKEM and APKE

Chosen-Ciphertext Indistinguishability (CCA)
confidentiality of AKEM and APKE ciphertexts

Authenticity (Auth)
unforgeability of AKEM and APKE ciphertexts

Both of them in two variants:

Outsider adversary can choose from the honest key pairs when calling oracles,
no honest key pair is compromised

Insider adversary can provide sender or receiver secret key,
this is stronger than compromise of honestly generated key pairs

16

Security Notions for AKEM and APKE

Chosen-Ciphertext Indistinguishability (CCA)
confidentiality of AKEM and APKE ciphertexts

Authenticity (Auth)
unforgeability of AKEM and APKE ciphertexts

Both of them in two variants:

Outsider adversary can choose from the honest key pairs when calling oracles,
no honest key pair is compromised

Insider adversary can provide sender or receiver secret key,
this is stronger than compromise of honestly generated key pairs

16

Proofs About HPKE’s Auth Mode

Authenticated
KEM
 KeySchedule DEM Encryption

Interface

KEM shared

secret

key, base nonce

plaintext

sender

private
 key

receiver

public
key

KEM ciphertext DEM ciphertext

• CryptoVerif: Outsider-CCA, Insider-CCA, Outsider-Auth
of the standard’s Diffie-Hellman-based instantiation of AKEM

• CryptoVerif: PRF-security of HPKE’s KeySchedule
• CryptoVerif: composition theorems for Outsider-CCA, Insider-CCA, and Outsider-Auth
of the AKEM/DEM construction

• Hand-written non-tight proof of single-user/two-user⇒ multi-user security notions
for AKEM, to close gap to proofs of, e.g., PQ KEMs

17

Proofs About HPKE’s Auth Mode

Authenticated
KEM
 KeySchedule DEM Encryption

Interface

KEM shared

secret

key, base nonce

plaintext

sender

private
 key

receiver

public
key

KEM ciphertext DEM ciphertext

• CryptoVerif: Outsider-CCA, Insider-CCA, Outsider-Auth
of the standard’s Diffie-Hellman-based instantiation of AKEM

• CryptoVerif: PRF-security of HPKE’s KeySchedule

• CryptoVerif: composition theorems for Outsider-CCA, Insider-CCA, and Outsider-Auth
of the AKEM/DEM construction

• Hand-written non-tight proof of single-user/two-user⇒ multi-user security notions
for AKEM, to close gap to proofs of, e.g., PQ KEMs

17

Proofs About HPKE’s Auth Mode

Authenticated
KEM
 KeySchedule DEM Encryption

Interface

KEM shared

secret

key, base nonce

plaintext

sender

private
 key

receiver

public
key

KEM ciphertext DEM ciphertext

• CryptoVerif: Outsider-CCA, Insider-CCA, Outsider-Auth
of the standard’s Diffie-Hellman-based instantiation of AKEM

• CryptoVerif: PRF-security of HPKE’s KeySchedule
• CryptoVerif: composition theorems for Outsider-CCA, Insider-CCA, and Outsider-Auth
of the AKEM/DEM construction

• Hand-written non-tight proof of single-user/two-user⇒ multi-user security notions
for AKEM, to close gap to proofs of, e.g., PQ KEMs

17

Proofs About HPKE’s Auth Mode

Authenticated
KEM
 KeySchedule DEM Encryption

Interface

KEM shared

secret

key, base nonce

plaintext

sender

private
 key

receiver

public
key

KEM ciphertext DEM ciphertext

• CryptoVerif: Outsider-CCA, Insider-CCA, Outsider-Auth
of the standard’s Diffie-Hellman-based instantiation of AKEM

• CryptoVerif: PRF-security of HPKE’s KeySchedule
• CryptoVerif: composition theorems for Outsider-CCA, Insider-CCA, and Outsider-Auth
of the AKEM/DEM construction

• Hand-written non-tight proof of single-user/two-user⇒ multi-user security notions
for AKEM, to close gap to proofs of, e.g., PQ KEMs

17

Elliptic Curves and Nominal Groups

The HPKE standard allows for different elliptic curves, in particular the NIST curves P-256,
P-384, P-521, as well as Curve25519 and Curve448.

• The NIST curves are prime-order groups.
• Curve25519 and Curve448 are not prime-order groups.

For each honestly generated public key, there is a small number of equivalent public
keys.

We define a framework of (rerandomisable) nominal groups to cover both prime-order
and non-prime-order groups in one model.

In short: We do not assume a group structure, but only an exponentiation function with
certain properties.

18

Elliptic Curves and Nominal Groups

The HPKE standard allows for different elliptic curves, in particular the NIST curves P-256,
P-384, P-521, as well as Curve25519 and Curve448.

• The NIST curves are prime-order groups.
• Curve25519 and Curve448 are not prime-order groups.

For each honestly generated public key, there is a small number of equivalent public
keys.

We define a framework of (rerandomisable) nominal groups to cover both prime-order
and non-prime-order groups in one model.

In short: We do not assume a group structure, but only an exponentiation function with
certain properties.

18

Elliptic Curves and Nominal Groups

The HPKE standard allows for different elliptic curves, in particular the NIST curves P-256,
P-384, P-521, as well as Curve25519 and Curve448.

• The NIST curves are prime-order groups.
• Curve25519 and Curve448 are not prime-order groups.
For each honestly generated public key, there is a small number of equivalent public
keys.

We define a framework of (rerandomisable) nominal groups to cover both prime-order
and non-prime-order groups in one model.

In short: We do not assume a group structure, but only an exponentiation function with
certain properties.

18

Elliptic Curves and Nominal Groups

The HPKE standard allows for different elliptic curves, in particular the NIST curves P-256,
P-384, P-521, as well as Curve25519 and Curve448.

• The NIST curves are prime-order groups.
• Curve25519 and Curve448 are not prime-order groups.
For each honestly generated public key, there is a small number of equivalent public
keys.

We define a framework of (rerandomisable) nominal groups to cover both prime-order
and non-prime-order groups in one model.

In short: We do not assume a group structure, but only an exponentiation function with
certain properties.

18

Exact Security of HPKE

Algorithm choices with their security level:

• Elliptic curves from 128 to 256 bits
• Hash functions from 256 to 512 bits
• AEAD with key length from 128 to 256 bits,
the auth tag length is always 128 bits.

Proof result: the length of the auth tag limits the overall security level to 128 bits.

19

HPKE: Conclusion and Future Work

HPKE Auth mode satisfies its desired security properties with a
maximum security level of 128 bits.

Nominal Groups cover prime-order and non-prime-order groups in one model.

Future Work:

• open question: multi-key security of current AEAD schemes
• detailed analysis of (Auth)PSK mode

20

HPKE: Conclusion and Future Work

HPKE Auth mode satisfies its desired security properties with a
maximum security level of 128 bits.

Nominal Groups cover prime-order and non-prime-order groups in one model.

Future Work:

• open question: multi-key security of current AEAD schemes
• detailed analysis of (Auth)PSK mode

20

Part I: The WireGuard VPN Protocol

Benjamin Lipp, Bruno Blanchet, and Karthikeyan Bhargavan. “A Mechanised Cryptographic Proof
of the WireGuard Virtual Private Network Protocol”. IEEE EuroS&P 2019.

20

The WireGuard Virtual Private Network (VPN)

Protocol and implementation in progress since 2015

• uses modern cryptography
• no ciphersuite negotiation
(unlike e. g., TLS)

• aims to replace OpenVPN and IPsec
• works directly over UDP
• only a few thousand lines of code

• integration into the Linux kernel in 2020
• organizations and VPN providers started adopting it

21

The WireGuard Virtual Private Network (VPN)

Protocol and implementation in progress since 2015

• uses modern cryptography
• no ciphersuite negotiation
(unlike e. g., TLS)

• aims to replace OpenVPN and IPsec
• works directly over UDP
• only a few thousand lines of code

• integration into the Linux kernel in 2020
• organizations and VPN providers started adopting it

21

The WireGuard Virtual Private Network (VPN)

Protocol and implementation in progress since 2015

• uses modern cryptography
• no ciphersuite negotiation
(unlike e. g., TLS)

• aims to replace OpenVPN and IPsec
• works directly over UDP
• only a few thousand lines of code

• integration into the Linux kernel in 2020
• organizations and VPN providers started adopting it

21

WireGuard’s Main Protocol

Initiator Responder

handshake1

handshake2

transport data

� transport data

transport data

Based on protocol IKpsk2 from the
Noise Protocol Framework

1st transport data msg must come from
initiator

22

WireGuard’s Main Protocol

Initiator Responder

handshake1

handshake2

transport data

� transport data

transport data

Based on protocol IKpsk2 from the
Noise Protocol Framework

1st transport data msg must come from
initiator

22

Our Contributions

Mechanized cryptographic proof of WireGuard using CryptoVerif, analysing:

• the entire protocol, including transport data messages
• usual properties for secure channels
• identity hiding
• resistance against denial of service

Reusable contributions:

• Precise model of the Curve25519 elliptic curve for Diffie-Hellman
• Indifferentiability lemmas for chains of random oracle calls

Related work:

• WireGuard: DowlingPaterson’18, DonenfeldMilner’18
• IKpsk2: KobeissiNicolasBhargavan’19, Suter-Dörig’18, Girol’19

23

Our Contributions

Mechanized cryptographic proof of WireGuard using CryptoVerif, analysing:

• the entire protocol, including transport data messages
• usual properties for secure channels
• identity hiding
• resistance against denial of service

Reusable contributions:

• Precise model of the Curve25519 elliptic curve for Diffie-Hellman
• Indifferentiability lemmas for chains of random oracle calls

Related work:

• WireGuard: DowlingPaterson’18, DonenfeldMilner’18
• IKpsk2: KobeissiNicolasBhargavan’19, Suter-Dörig’18, Girol’19

23

Our Contributions

Mechanized cryptographic proof of WireGuard using CryptoVerif, analysing:

• the entire protocol, including transport data messages
• usual properties for secure channels
• identity hiding
• resistance against denial of service

Reusable contributions:

• Precise model of the Curve25519 elliptic curve for Diffie-Hellman
• Indifferentiability lemmas for chains of random oracle calls

Related work:

• WireGuard: DowlingPaterson’18, DonenfeldMilner’18
• IKpsk2: KobeissiNicolasBhargavan’19, Suter-Dörig’18, Girol’19

23

Analyzed Properties

Usual secure channel properties:

Confidentiality • Secrecy and
• Forward secrecy of transport data messages

Agreement • Mutual authentication (as of 2nd protocol msg)
• Session uniqueness
• Channel binding
• Resistance against key compromise impersonation
• Resistance against identity mis-binding
(except theoretical attack)

Additional properties in WireGuard:

• Resistance against denial of service
(no replay of 1st msg, cookie enforces round-trip)

• Identity hiding (weak)

24

Analyzed Properties

Usual secure channel properties:

Confidentiality • Secrecy and
• Forward secrecy of transport data messages

Agreement • Mutual authentication (as of 2nd protocol msg)
• Session uniqueness
• Channel binding
• Resistance against key compromise impersonation
• Resistance against identity mis-binding
(except theoretical attack)

Additional properties in WireGuard:

• Resistance against denial of service
(no replay of 1st msg, cookie enforces round-trip)

• Identity hiding (weak)

24

Analyzed Properties

Usual secure channel properties:

Confidentiality • Secrecy and
• Forward secrecy of transport data messages

Agreement • Mutual authentication (as of 2nd protocol msg)
• Session uniqueness
• Channel binding
• Resistance against key compromise impersonation
• Resistance against identity mis-binding
(except theoretical attack)

Additional properties in WireGuard:

• Resistance against denial of service
(no replay of 1st msg, cookie enforces round-trip)

• Identity hiding (weak)
24

Chain of Random Oracle Calls

8 chained calls to
one random oracle.

C ← const

C ← hkdf(C, v0)

C‖k1 ← hkdf(C, v1)

C‖k2 ← hkdf(C, v2)

C ← hkdf(C, v3)

C ← hkdf(C, v4)

C ← hkdf(C, v5)

C‖π‖k3 ← hkdf(C, v6)

T→‖T← ← hkdf(C, ε)

25

Game Size Explosion in CryptoVerif

Considering all collision cases leads to exponential growth of number of branches:

v0

else
== v7[i]
== v6[i]
== v5[i]
== v4[i]
== v3[i]
== v2[i]
== v1[i]
== v0[i]

v1

else
== v7[j]
== v6[j]
== v5[j]
== v4[j]
== v3[j]
== v2[j]
== v1[j]
== v0[j]

v2

else
== v7[k]
== v6[k]
== v5[k]
== v4[k] · · ·
== v3[k]
== v2[k]
== v1[k]
== v0[k]

26

Game Size Explosion in CryptoVerif

Considering all collision cases leads to exponential growth of number of branches:

v0

else
== v7[i]
== v6[i]
== v5[i]
== v4[i]
== v3[i]
== v2[i]
== v1[i]
== v0[i]

v1

else
== v7[j]
== v6[j]
== v5[j]
== v4[j]
== v3[j]
== v2[j]
== v1[j]
== v0[j]

v2

else
== v7[k]
== v6[k]
== v5[k]
== v4[k] · · ·
== v3[k]
== v2[k]
== v1[k]
== v0[k]

26

Game Size Explosion in CryptoVerif

Considering all collision cases leads to exponential growth of number of branches:

v0

else
== v7[i]
== v6[i]
== v5[i]
== v4[i]
== v3[i]
== v2[i]
== v1[i]
== v0[i]

v1

else
== v7[j]
== v6[j]
== v5[j]
== v4[j]
== v3[j]
== v2[j]
== v1[j]
== v0[j]

v2

else
== v7[k]
== v6[k]
== v5[k]
== v4[k] · · ·
== v3[k]
== v2[k]
== v1[k]
== v0[k]

26

Simplification of the Random Oracle Chain

Indifferentiable in any context:

8 chained calls to
one random oracle.

C ← const

C ← hkdf(C, v0)

C‖k1 ← hkdf(C, v1)

C‖k2 ← hkdf(C, v2)

C ← hkdf(C, v3)

C ← hkdf(C, v4)

C ← hkdf(C, v5)

C‖π‖k3 ← hkdf(C, v6)

T→‖T← ← hkdf(C, ε)

3 independent calls to
3 independent random oracles.

k1 ← chain1(v0, v1)

k2 ← chain2(v0, v1, v2)

π‖k3‖T→‖T← ← chain6(v0, v1, v2, v3, v4, v5, v6)

27

Simplification of the Random Oracle Chain

Indifferentiable in any context:

8 chained calls to
one random oracle.

C ← const

C ← hkdf(C, v0)

C‖k1 ← hkdf(C, v1)

C‖k2 ← hkdf(C, v2)

C ← hkdf(C, v3)

C ← hkdf(C, v4)

C ← hkdf(C, v5)

C‖π‖k3 ← hkdf(C, v6)

T→‖T← ← hkdf(C, ε)

3 independent calls to
3 independent random oracles.

k1 ← chain1(v0, v1)

k2 ← chain2(v0, v1, v2)

π‖k3‖T→‖T← ← chain6(v0, v1, v2, v3, v4, v5, v6)

27

Simplification of the Random Oracle Chain

Indifferentiable in any context:

8 chained calls to
one random oracle.

C ← const

C ← hkdf(C, v0)

C‖k1 ← hkdf(C, v1)

C‖k2 ← hkdf(C, v2)

C ← hkdf(C, v3)

C ← hkdf(C, v4)

C ← hkdf(C, v5)

C‖π‖k3 ← hkdf(C, v6)

T→‖T← ← hkdf(C, ε)

3 independent calls to
3 independent random oracles.

k1 ← chain1(v0, v1)

k2 ← chain2(v0, v1, v2)

π‖k3‖T→‖T← ← chain6(v0, v1, v2, v3, v4, v5, v6)

27

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or an honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr , Ei, Er , and psk be compromised.
• Adversary constructs S′i 6= Si, S′r 6= Sr
as different but equivalent static keys

→ The two sessions derive the same traffic keys but are between
different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation

28

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or an honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr , Ei, Er , and psk be compromised.
• Adversary constructs S′i 6= Si, S′r 6= Sr
as different but equivalent static keys

→ The two sessions derive the same traffic keys but are between
different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation

28

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or an honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr , Ei, Er , and psk be compromised.
• Adversary constructs S′i 6= Si, S′r 6= Sr
as different but equivalent static keys

→ The two sessions derive the same traffic keys but are between
different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation

28

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or an honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr , Ei, Er , and psk be compromised.
• Adversary constructs S′i 6= Si, S′r 6= Sr
as different but equivalent static keys

→ The two sessions derive the same traffic keys but are between
different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation

28

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or an honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr , Ei, Er , and psk be compromised.
• Adversary constructs S′i 6= Si, S′r 6= Sr
as different but equivalent static keys

→ The two sessions derive the same traffic keys but are between
different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation

28

A Theoretical Attack leading to Identity Mis-Binding

Definition: Resistance against Identity Mis-Binding
Two honest parties deriving the same traffic keys in some sessions

• agree on each other’s identities
• even if one or both of them have been interacting with
a dishonest party or an honest party with compromised keys

Theoretical Attack:

Adv
S′r S′i

Si Sr

• Let Si, Sr , Ei, Er , and psk be compromised.
• Adversary constructs S′i 6= Si, S′r 6= Sr
as different but equivalent static keys

→ The two sessions derive the same traffic keys but are between
different parties.

Mitigation: include static public keys Spubi and Spubr into key derivation
28

WireGuard: Conclusion and Future Work

WireGuard protocol is cryptographically secure

• theoretical identity mis-binding attack
• weak identity hiding

Possible future work

• more Noise protocols
• use PRF-ODH assumption

29

Part II: Translate CryptoVerif Models to Executable F?

Specifications

29

Problem Statement

Protocol Specification

Cryptographic Proof Implementation
relation?

30

Proposal: cv2fstar

Protocol Specification

CryptoVerif Model and Proof Executable F* Specification
cv2fstar

31

Output Language: F?

“F? is a general-purpose functional programming language aimed at program verification”
— www.fstar-lang.org

• rich type system

• extracts to OCaml and F#;
C, WebAssembly (KaRaMeL)

• interactive proofs and discharging to
SMT

• HACL? High-Assurance Cryptographic
Library
used in Mozilla’s NSS, Windows Kernel, Linux
Kernel, WireGuard, Microsoft’s QUIC
implementation, Tezos blockchain

32

https://www.fstar-lang.org/

Output Language: F?

“F? is a general-purpose functional programming language aimed at program verification”
— www.fstar-lang.org

• rich type system

• extracts to OCaml and F#;
C, WebAssembly (KaRaMeL)

• interactive proofs and discharging to
SMT

• HACL? High-Assurance Cryptographic
Library
used in Mozilla’s NSS, Windows Kernel, Linux
Kernel, WireGuard, Microsoft’s QUIC
implementation, Tezos blockchain

32

https://www.fstar-lang.org/

Detailed Motivation

1. obtain implementation with cryptographic security guarantees
→ cv2fstar provides an automatic translation from CryptoVerif

2. provably instantiate non-cryptographic assumptions of the CryptoVerif model
→ cv2fstar generates lemmas as proof obligations

3. reuse CryptoVerif theorems for further proofs
→ future work: translate as assumed lemmas

33

Related Work

Large body of research, in three groups:

1. Model→ Implementation

2. Implementation→ Model

3. Proofs on Code

cv2fstar uses approach (1). Builds upon cv2ocaml.

34

Related Work

Large body of research, in three groups:

1. Model→ Implementation

2. Implementation→ Model

3. Proofs on Code

cv2fstar uses approach (1). Builds upon cv2ocaml.

34

F? Specifications in Pure State-Passing Style

state = entropy ∗ tables ∗ sessions ∗ events

entropy: explicitly track randomness used for random sampling
tables: each table has an append-only list of entries

sessions: map of session ID→ list of session entries.
enforces oracle order, implements variable scope in oracle sequences

events: append-only list of events

val oracle: state -> nat -> t -> state * option (nat * T)

35

F? Specifications in Pure State-Passing Style

state = entropy ∗ tables ∗ sessions ∗ events

entropy: explicitly track randomness used for random sampling
tables: each table has an append-only list of entries

sessions: map of session ID→ list of session entries.
enforces oracle order, implements variable scope in oracle sequences

events: append-only list of events

val oracle: state -> nat -> t -> state * option (nat * T)

35

Translating Oracle Sequences Using Sessions

O1(...) :=
a <- ...;
...
return(...);

O2(...) :=
b <- a;
...
return(...);

O3(...) :=
c <- f(a, b);
...
return(...).

CryptoVerif semantics:
• Oracles can only be called in order
• Variables stay in scope for following
oracles

F? implementation:

• before returning: store free variables of
following oracles in session entry

• return a session ID
• following oracle is called with session
ID, retrieves values of free variables

36

Translating Oracle Sequences Using Sessions

O1(...) :=
a <- ...;
...
return(...);

O2(...) :=
b <- a;
...
return(...);

O3(...) :=
c <- f(a, b);
...
return(...).

CryptoVerif semantics:
• Oracles can only be called in order
• Variables stay in scope for following
oracles

F? implementation:
• before returning: store free variables of
following oracles in session entry

• return a session ID
• following oracle is called with session
ID, retrieves values of free variables

36

Translating Oracle Sequences Using Sessions

O1(...) :=
a <- ...;
...
return(...);

O2(...) :=
b <- a;
...
return(...);

O3(...) :=
c <- f(a, b);
...
return(...).

CryptoVerif semantics:
• Oracles can only be called in order
• Variables stay in scope for following
oracles

F? implementation:
• before returning: store free variables of
following oracles in session entry

• return a session ID

• following oracle is called with session
ID, retrieves values of free variables

36

Translating Oracle Sequences Using Sessions

O1(...) :=
a <- ...;
...
return(...);

O2(...) :=
b <- a;
...
return(...);

O3(...) :=
c <- f(a, b);
...
return(...).

CryptoVerif semantics:
• Oracles can only be called in order
• Variables stay in scope for following
oracles

F? implementation:
• before returning: store free variables of
following oracles in session entry

• return a session ID
• following oracle is called with session
ID, retrieves values of free variables

36

Type Declarations

Function Declarations

Equations

Event Declarations

Table Declarations

Letfun Definitions

Oracle Sequences

Oracle Bodies

Security Queries

CryptoVerif Model

Prove
(CryptoVerif)

Modules

37

Type Declarations
M.Types.fsti

Function Declarations
M.Functions.fsti

Lemma Declarations
M.Equations.fsti

Event Definitions
M.Events.fsti

Table Definitions
M.Tables.fsti + fst

Letfun Implementations
M.Letfun.fsti + fst

Session Definitions
M.Sessions.fsti + fst

Oracle Implementations
M.Module.fsti + fst

Type Declarations

Function Declarations

Equations

Event Declarations

Table Declarations

Letfun Definitions

Oracle Sequences

Oracle Bodies

Security Queries

CryptoVerif Model Generated by cv2fstar

Prove
(CryptoVerif)

Modules

38

Type Declarations
M.Types.fsti

Function Declarations
M.Functions.fsti

Lemma Declarations
M.Equations.fsti

Event Definitions
M.Events.fsti

Table Definitions
M.Tables.fsti + fst

Letfun Implementations
M.Letfun.fsti + fst

Session Definitions
M.Sessions.fsti + fst

Oracle Implementations
M.Module.fsti + fst

Type Declarations

Function Declarations

Equations

Event Declarations

Table Declarations

Letfun Definitions

Oracle Sequences

Oracle Bodies

Security Queries

CryptoVerif Model Generated by cv2fstar

Prove
(CryptoVerif)

Modules

Type Implementations
M.Types.fst

Function Implementations
M.Functions.fst

Lemma Proofs
M.Equations.fst

Written by User

39

Type Declarations
M.Types.fsti

Function Declarations
M.Functions.fsti

Lemma Declarations
M.Equations.fsti

Event Definitions
M.Events.fsti

Table Definitions
M.Tables.fsti + fst

Letfun Implementations
M.Letfun.fsti + fst

Session Definitions
M.Sessions.fsti + fst

Oracle Implementations
M.Module.fsti + fst

Type Declarations

Function Declarations

Equations

Event Declarations

Table Declarations

Letfun Definitions

Oracle Sequences

Oracle Bodies

Security Queries

CryptoVerif Model Generated by cv2fstar

Prove
(CryptoVerif)

Modules

Type Implementations
M.Types.fst

Function Implementations
M.Functions.fst

Lemma Proofs
M.Equations.fst

Written by User

HACL*

CVTypes

State

cv2fstar Framework

State.fsti + fst

CVTypes.fsti + fst

40

Type Declarations
M.Types.fsti

Function Declarations
M.Functions.fsti

Lemma Declarations
M.Equations.fsti

Event Definitions
M.Events.fsti

Table Definitions
M.Tables.fsti + fst

Letfun Implementations
M.Letfun.fsti + fst

Session Definitions
M.Sessions.fsti + fst

Oracle Implementations
M.Module.fsti + fst

Type Declarations

Function Declarations

Equations

Event Declarations

Table Declarations

Letfun Definitions

Oracle Sequences

Oracle Bodies

Security Queries

CryptoVerif Model Generated by cv2fstar

Prove
(CryptoVerif)

Modules

Type Implementations
M.Types.fst

Function Implementations
M.Functions.fst

Lemma Proofs
M.Equations.fst

Written by User

HACL*

CVTypes

State

cv2fstar Framework

Verify
(F*)

State.fsti + fst

CVTypes.fsti + fst

41

Non-Cryptographic Assumptions to Lemmas

4 sources from which lemmas are generated as proof obligations:

1. explicit equations

equation forall v_1:t_1, ..., v_n:t_n; M if M'.

2. built-in equational theories
e.g., commutativity, associativity, groups

equation builtin commut_group(f, inv, n).

3. correctness of inverses for functions declared [data]
4. correctness of inverses for (de)serialization functions

42

Non-Cryptographic Assumptions to Lemmas

4 sources from which lemmas are generated as proof obligations:

1. explicit equations

equation forall v_1:t_1, ..., v_n:t_n; M if M'.

2. built-in equational theories
e.g., commutativity, associativity, groups

equation builtin commut_group(f, inv, n).

3. correctness of inverses for functions declared [data]
4. correctness of inverses for (de)serialization functions

42

Non-Cryptographic Assumptions to Lemmas

4 sources from which lemmas are generated as proof obligations:

1. explicit equations

equation forall v_1:t_1, ..., v_n:t_n; M if M'.

2. built-in equational theories
e.g., commutativity, associativity, groups

equation builtin commut_group(f, inv, n).

3. correctness of inverses for functions declared [data]
4. correctness of inverses for (de)serialization functions

42

Case Study: The Needham-Schroeder-Lowe Protocol (NSL)

Initiator A Responder B

enc(msg1(NA,addrA),pkB)

enc(msg2(NA,NB,addrB),pkA)

enc(msg3(NB),pkB)

43

NSL: Source Code Statistics

files # SLOC # PLOC

cv2fstar handwritten framework F? 12 870 150

NSL handwritten CryptoVerif 1 170 0
NSL generated by cv2fstar F? 20 910 0
NSL handwritten F? 3 370 100

51 lemmas generated for NSL
42 trivial for F?: proven by ()
18 coming from CryptoVerif’s standard library (all trivial for F?)

≈ 100 lines of proof code in NSL.Equations.fst, 150 in CVTypes.fst(i) combined.

44

cv2fstar: Conclusion

We have shown that cv2fstar

• allows to translate CryptoVerif models to executable code
• interoperable with HACL?

• allows to fill in implementation details in F?,
and to prove that they fulfill the CryptoVerif model’s assumptions

Future Work (excerpt)

• Translate CryptoVerif theorems to F?:
correspondance, secrecy, indistinguishability properties

• WireGuard case study, link with Noise∗ implementation

45

cv2fstar: Conclusion

We have shown that cv2fstar

• allows to translate CryptoVerif models to executable code
• interoperable with HACL?

• allows to fill in implementation details in F?,
and to prove that they fulfill the CryptoVerif model’s assumptions

Future Work (excerpt)

• Translate CryptoVerif theorems to F?:
correspondance, secrecy, indistinguishability properties

• WireGuard case study, link with Noise∗ implementation

45

Thesis Conclusion

45

Thesis Conclusion: Part I

• Writing highly-detailed cryptographic proofs using CryptoVerif is feasible for
real-world protocols.

• More detailed models of elliptic curves than any handwritten analysis before: use
Curve25519 with confidence.

• WireGuard: carefully modeled very close to its implementation.

• HPKE: concrete security bounds; influence on standard.

46

Thesis Conclusion: Part II

cv2fstar compiles CryptoVerif models to executable F? specifications.

• cryptographic properties on executable code

• prove properties about implementation details

47

State of the User Base of Cryptographic Proof Assistants?

“I believe that if a tool like that is built well, it will be adopted and used by many.
Wouldn’t you like to be cited by half of the papers appearing in CRYPTO 2010? Here is
your chance. . . ”

— Halevi in the year 2005 [Hal05]

“formalistic approaches are gone [from cryptography’s tier-1 venues] (unless they claim to
bridge to ‘real’ crypto)”

— Rogaway in the year 2015 [Rog15]

Interest and demand is clearly there, from cryptographers and standardization bodies.

48

State of the User Base of Cryptographic Proof Assistants?

“I believe that if a tool like that is built well, it will be adopted and used by many.
Wouldn’t you like to be cited by half of the papers appearing in CRYPTO 2010? Here is
your chance. . . ”

— Halevi in the year 2005 [Hal05]

“formalistic approaches are gone [from cryptography’s tier-1 venues] (unless they claim to
bridge to ‘real’ crypto)”

— Rogaway in the year 2015 [Rog15]

Interest and demand is clearly there, from cryptographers and standardization bodies.

48

State of the User Base of Cryptographic Proof Assistants?

“I believe that if a tool like that is built well, it will be adopted and used by many.
Wouldn’t you like to be cited by half of the papers appearing in CRYPTO 2010? Here is
your chance. . . ”

— Halevi in the year 2005 [Hal05]

“formalistic approaches are gone [from cryptography’s tier-1 venues] (unless they claim to
bridge to ‘real’ crypto)”

— Rogaway in the year 2015 [Rog15]

Interest and demand is clearly there, from cryptographers and standardization bodies.

48

State of the User Base of Cryptographic Proof Assistants?

“I believe that if a tool like that is built well, it will be adopted and used by many.
Wouldn’t you like to be cited by half of the papers appearing in CRYPTO 2010? Here is
your chance. . . ”

— Halevi in the year 2005 [Hal05]

“formalistic approaches are gone [from cryptography’s tier-1 venues] (unless they claim to
bridge to ‘real’ crypto)”

— Rogaway in the year 2015 [Rog15]

Interest and demand is clearly there, from cryptographers and standardization bodies.

48

Challenges

Multitude of proof methodologies and security notions:
game-based, simulation-based, UC, state-separating proofs.

“does not have a very appealing ‘business case”’
— Halevi [Hal05]

Challenges:

• small user base
• incentives and funding for researchers and developers?

49

Specific Goals?

• Teaching material

• More accessible user interfaces

• Artifact evaluation at more publication venues. (CHES is leading by example since
2021!)

→ Build up trust in the tools within the community.

50

Future Work

Generally: continue using and developing cryptographic proof assistants in the area of
practice-oriented provable security.

• Collaborate with cryptographers, support standardization efforts

• Usability of proof assistants

• Consider quantum adversaries

Computer-aided cryptographic proofs are an exciting and in-demand research effort, with
many promising open problems!

51

	The HPKE Standard
	The WireGuard VPN Protocol
	Linking Cryptographic Proofs and Implementations
	Linking Cryptographic Proofs to Implementations
	Conclusion

