
Analysing the HPKE Standard

Joël Alwen1, Bruno Blanchet3, Eduard Hauck2, Eike Kiltz2, Benjamin Lipp3,

Doreen Riepel2

October 18, 2021

Wickr1, Ruhr-University Bochum2, Inria Paris3



Hybrid Public Key Encryption (HPKE)

• Hybrid in the spirit of the KEM/DEM paradigm:

asymmetric building block as Key Encapsulation Mechanism (KEM),

symmetric building block as Data Encapsulation Mechanism (DEM)

• Standard in development by the Crypto Forum Research Group

https://github.com/cfrg/draft-irtf-cfrg-hpke

Usage in TLS 1.3’s Encrypted Client Hello (ECH) extension, and

the Messaging Layer Security (MLS) group messaging protocol

1

https://github.com/cfrg/draft-irtf-cfrg-hpke


HPKE Specifies Different APIs

• Single-Shot Encryption: encrypt 1 message

• Single-Shot Secret Export: provide 1 secret of (almost) arbitrary

length

• Multi-Shot: multiple messages, and multiple secrets

This work focuses on Single-Shot Encryption.

2



HPKE Specifies Different Modes

Modes vary in the involved long-term key material.

Mode names reflect authentication guarantees (to some extent).

receiver key pair sender key pair pre-shared key

Base y n n

Auth y y n

PSK y n y

AuthPSK y y y

This work focuses on Auth mode.

3



Syntax: Authenticated Public Key Encryption (APKE)

Sender Receiver

(skS , pkS)
$←− Gen (skR , pkR)

$←− Gen

c
$←− AuthEnc(skS , pkR ,m)

c
m← AuthDec(skR , pkS , c)

4



Syntax: Auth. Key Encapsulation Mechanism (AKEM)

Sender Receiver

(skS , pkS)
$←− Gen (skR , pkR)

$←− Gen

(c ,K )
$←− AuthEncap(skS , pkR)

c
K ← AuthDecap(skR , pkS , c)

5



Syntax: KeySchedule

The AKEM shared secret is not used directly by the APKE.

A key schedule function is used to derive an AEAD key and nonce from it:

key , nonce ← KeySchedule(K , info)

info is an arbitrary bitstring chosen by the application.

6



Generic APKE Construction

AuthEnc(skS , pkR ,m, info):

c1,K
$←− AuthEncap(skS , pkR)

key , nonce ← KeySchedule(K , info)

c2 ← EncDEM(key , nonce,m)

return c1, c2

7



Security Notions

Chosen-Ciphertext Indistinguishability (CCA)

confidentiality of KEM encapsulations and PKE

ciphertexts

Authenticity (Auth)

unforgeability of KEM encapsulations and PKE ciphertexts

8



Security Experiments for APKE: Confidentiality

Setup:

n honest key pairs

b secret bit

Oracles:

AEnc(i ∈ [n], pk,m) returns c

ADec(pk, j ∈ [n], c) returns m, or ⊥ if c was produced by AEnc

Outsider-CCA:

Chall(i ∈ [n], j ∈ [n],m0,m1) returns c of mb.

Adv wins if guesses b correctly.

Insider-CCA:

Chall(sk , j ∈ [n],m0,m1) returns c of mb.

Adv wins if guesses b correctly.

9



Security Experiments for APKE: Confidentiality

Setup:

n honest key pairs

b secret bit

Oracles:

AEnc(i ∈ [n], pk,m) returns c

ADec(pk, j ∈ [n], c) returns m, or ⊥ if c was produced by AEnc

Outsider-CCA:

Chall(i ∈ [n], j ∈ [n],m0,m1) returns c of mb.

Adv wins if guesses b correctly.

Insider-CCA:

Chall(sk , j ∈ [n],m0,m1) returns c of mb.

Adv wins if guesses b correctly.

9



Security Experiments for APKE: Confidentiality

Setup:

n honest key pairs

b secret bit

Oracles:

AEnc(i ∈ [n], pk,m) returns c

ADec(pk, j ∈ [n], c) returns m, or ⊥ if c was produced by AEnc

Outsider-CCA:

Chall(i ∈ [n], j ∈ [n],m0,m1) returns c of mb.

Adv wins if guesses b correctly.

Insider-CCA:

Chall(sk , j ∈ [n],m0,m1) returns c of mb.

Adv wins if guesses b correctly.

9



Security Experiments for APKE: Authentication

Setup:

n honest key pairs

b secret bit

Oracles:

AEnc(i ∈ [n], pk,m) returns c

ADec(pk, j ∈ [n], c) returns m, or ⊥ if c was produced by AEnc

Outsider-Auth:

Chall(i ∈ [n], j ∈ [n], c)

Adv wins if c was not produced by AEnc and decrypts correctly.

Insider-Auth:

Chall(i ∈ [n], sk , c)

Adv wins if c was not produced by AEnc and decrypts correctly.

10



Security Experiments for APKE: Authentication

Setup:

n honest key pairs

b secret bit

Oracles:

AEnc(i ∈ [n], pk,m) returns c

ADec(pk, j ∈ [n], c) returns m, or ⊥ if c was produced by AEnc

Outsider-Auth:

Chall(i ∈ [n], j ∈ [n], c)

Adv wins if c was not produced by AEnc and decrypts correctly.

Insider-Auth:

Chall(i ∈ [n], sk , c)

Adv wins if c was not produced by AEnc and decrypts correctly.

10



Security Experiments for APKE: Authentication

Setup:

n honest key pairs

b secret bit

Oracles:

AEnc(i ∈ [n], pk,m) returns c

ADec(pk, j ∈ [n], c) returns m, or ⊥ if c was produced by AEnc

Outsider-Auth:

Chall(i ∈ [n], j ∈ [n], c)

Adv wins if c was not produced by AEnc and decrypts correctly.

Insider-Auth:

Chall(i ∈ [n], sk , c)

Adv wins if c was not produced by AEnc and decrypts correctly.

10



Security Experiments for AKEM: Outsider-CCA

Setup:

n honest key pairs

Oracles for Outsider-CCA:

AEncap(i ∈ [n], pk) returns c ,K , with K real-or-random.

ADecap(pk, j ∈ [n], c) returns K , being consistent with AEncap.

Adv wins if it can distinguish between real and random.

11



Security Experiments for AKEM: Insider-CCA

Setup:

n honest key pairs

Oracles for Insider-CCA:

AEncap(i ∈ [n], pk) returns real c ,K .

Chall(sk , j ∈ [n]) returns c ,K , with K real-or-random.

ADecap(pk, j ∈ [n], c) returns K , being consistent with Chall.

Adv wins if it can distinguish between real and random.

12



Security Experiments for AKEM: Outsider-Auth

Setup:

n honest key pairs

Oracles for Outsider-Auth:

AEncap(i ∈ [n], pk) returns c ,K .

ADecap(pk, j ∈ [n], c) returns K , with K real-or-random, and being

consistent with AEncap.

Adv wins if it can distinguish between real and random.

13



Three Composition Theorems Proved in This Work

Outsider-CCA and Insider-CCA:

If AKEM is (Outsider or Insider)-CCA, and KS is a PRF, and DEM

is IND-CPA+INT-CTXT,

then APKE is (Outsider or Insider)-CCA.

Outsider-Auth:

If AKEM is Outsider-Auth and Outsider-CCA, and KS is a PRF, and

DEM is INT-CTXT,

then APKE is Outsider-Auth.

Insider-Auth:

There is a concrete attack on the generic construction!

14



DH-AKEM for Prime-Order Groups

skS ← Z∗p
pkS = g skS

skR ← Z∗p
pkR = g skR

Gen

15



DH-AKEM for Prime-Order Groups

skS ← Z∗p
pkS = g skS

skR ← Z∗p
pkR = g skR

Gen

skE ← Z∗p
pkE = g skE

c = pkE

AuthEncap
context = c ‖ pkR ‖ pkS
dh = pkskE

R ‖ pkskS
R

K = H(context, dh)

15



DH-AKEM for Prime-Order Groups

skS ← Z∗p
pkS = g skS

skR ← Z∗p
pkR = g skR

Gen

skE ← Z∗p
pkE = g skE

c = pkE

context = c ‖ pkR ‖ pkS
dh = pkskE

R ‖ pkskS
R

K = H(context, dh)

c

15



DH-AKEM for Prime-Order Groups

skS ← Z∗p
pkS = g skS

skR ← Z∗p
pkR = g skR

Gen

skE ← Z∗p
pkE = g skE

c = pkE

context = c ‖ pkR ‖ pkS
dh = pkskE

R ‖ pkskS
R

K = H(context, dh)

c

context = c ‖ pkR ‖ pkS
dh = cskR ‖ pkskR

S

K = H(context, dh)

AuthDecap

15



Elliptic Curves and Nominal Groups

The HPKE standard allows for different elliptic curves, in particular the

NIST curves P-256, P-384, P-521, as well as Curve25519 and Curve448.

• NIST curves are prime-order groups. In particular, secret keys are

chosen uniformly at random from Z∗p.

• Curve25519 and Curve448 are not prime-order groups.

For each honestly generated public key, there is a small number of

equivalent public keys.

A Mechanised Cryptographic Proof of the WireGuard Virtual Private

Network Protocol. LBB, EuroSP 2019.

https://hal.inria.fr/hal-02100345

16

https://hal.inria.fr/hal-02100345


Elliptic Curves and Nominal Groups

The HPKE standard allows for different elliptic curves, in particular the

NIST curves P-256, P-384, P-521, as well as Curve25519 and Curve448.

• NIST curves are prime-order groups. In particular, secret keys are

chosen uniformly at random from Z∗p.

• Curve25519 and Curve448 are not prime-order groups.

For each honestly generated public key, there is a small number of

equivalent public keys.

A Mechanised Cryptographic Proof of the WireGuard Virtual Private

Network Protocol. LBB, EuroSP 2019.

https://hal.inria.fr/hal-02100345

16

https://hal.inria.fr/hal-02100345


Elliptic Curves and Nominal Groups

In short: We do not assume a group structure, but only an

exponentiation function with certain properties.

A nominal group N consists of:

• finite set of elements G
• base element g

• eff. comp. exponentiation function exp : G × Z→ G.

We write X y for exp(X , y).

• finite sets: honest exponents EH ⊂ Z, exponents EU ⊂ Z

exp is required to fulfill:

1. (X y )z = X yz for all X ∈ G, y , z ∈ Z (correctness of Diffie-Hellman)

2. the discrete logarithm is unique in the set EU — needed to define

the Diffie-Hellman oracle

3. N is rerandomisable if rerandomisation preserves the distribution of

public keys for secret keys chosen in EU
17



Elliptic Curves and Nominal Groups: Parameters

Let DH be the uniform distribution on EH (honestly generated

exponents).

Let DU be the uniform distribution on EU .

Let ∆N := ∆[DH ,DU ] be the statistical distance between the two

distributions.

P-256 P-384 P-521 Curve25519 Curve448

Security level κN (bits) 128 192 256 128 224

∆N ≤ 0 0 0 2−125 2−220

For each honest secret key (exponent), we’ll need to add a ∆N to the

adversary advantage during the proof.

(for the definition of GapDH, see the paper.)

18



Theorems about DH-AKEM

Outsider-CCA and Insider-CCA:

GapDH assumption in rerandomisable nominal group N and

modeling H as a random oracle.

Outsider-Auth:

Square-GapDH assumption in rerandomisable nominal group N and

modeling H as a random oracle.

(exact security bounds differ between the three, see paper)

19



Exact Security of HPKE

Algorithm choices with their security level:

• Elliptic curves from 128 to 256 bit

• Hash functions from 256 to 512 bit

• AEAD with key length from 128 to 256 bit,

the auth tag length is always 128 bit.

Our proofs find that the length of the auth tag limits the overall security

level to 128 bit.

Current results on multi-key security of AEAD schemes are not sufficient

to guarantee the expected security level of, e.g., AES-128-GCM.

20



The CryptoVerif Proof Assistant

Proof assistant for game-based, code-based cryptographic proofs

encode security properties here

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

• supports secrecy, authentication, and indistinguishability properties

• built-in proof strategy, and can be guided in detail

• if the proof concludes, we have asymptotic security

• computes exact security probability bound

depending on number of queries, runtime of adversary, length of inputs

21



More Notes on CryptoVerif

• Assumptions have to be expressed in multi-instance versions

• a proof of 2-user security ⇒ n-user security cannot be expressed

• in this work, better security bound when starting directly with

multi-user notion!

• There are other limitations, which is what lets CryptoVerif go far

enough to treat large protocols! (SSH, TLS, WireGuard, . . . )

• CryptoVerif learning material available at

https://cryptoverif.inria.fr/tutorial

22

https://cryptoverif.inria.fr/tutorial


Conclusion, Contributions of This Work

• HPKE Auth mode satisfies its desired security properties

• Proofs of composition theorems for Outsider-CCA, Insider-CCA, and

Outsider-Auth of the AKEM/DEM construction

• Hand-written non-tight proof of single-user/two-user ⇒ multi-user

security notions for AKEM, to close gap to proofs of, e.g., PQ KEMs

• Proof of PRF-security of HPKE’s KeySchedule

• Proofs for Outsider-CCA, Insider-CCA, Outsider-Auth of DH-AKEM

• Introduction of (Rerandomisable) Nominal Groups to cover

non-prime-order groups

Paper: https://eprint.iacr.org/2020/1499

CryptoVerif models: https://doi.org/10.5281/zenodo.4297811

23

https://eprint.iacr.org/2020/1499
https://doi.org/10.5281/zenodo.4297811

	Instantiation

