
AMechanised Computational Analysis of
the WireGuard Virtual Private Network

Protocol

Master’s Thesis of

Benjamin Lipp
∗

presented at

Institute of Theoretical Informatics (ITI)

Competence Center for Applied Security Technology (KASTEL)

Department of Informatics

Karlsruhe Institute of Technology

and prepared at

Prosecco Research Team

INRIA Paris

Reviewers: Jörn Müller-Quade (KIT)

Dennis Hofheinz (KIT)

Advisors: Mario Stre�er (KIT)

Karthikeyan Bhargavan (INRIA)

Bruno Blanchet (INRIA)

Harry Halpin (INRIA)

November 24th, 2017 – May 23rd, 2018

blipp@mailbox.org

2

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel

vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten

anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des

KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet

zu haben.

Karlsruhe, 23. Mai 2018

Benjamin Lipp
∗

blipp@mailbox.org

Abstract

WireGuard is a new VPN software and protocol that is developed as free and open source

project with academic support. It aims to replace IPsec and based VPNs like OpenVPN

and will very soon be o�cially integrated into the Linux kernel. While this is desirable for

performance reasons, �aws in the protocol or the implementation would be devastating.

Ideally, this new implementation would be formally veri�ed to have proved security guar-

antees from the start. This thesis lays the groundwork for that from the cryptographic

point of view by contributing the �rst mechanised proof of the protocol under the com-

putational model. In a future work, this proof can be formally linked with a formally

veri�ed implementation. We use the CryptoVerif proof assistant that produces proofs as

sequence of games and calculates a probability negligible in the security parameter that

bounds the attackers advantage to break the security properties (asymptotic security). Our

attacker model is close to those of eCK and ACCE-like models and permits the attacker to

compromise any key. Scenarios that would trivially break the protocol are excluded. We

contribute proofs for message secrecy, forward secrecy, correctness, mutual authentica-

tion, as well as resistance against key compromise impersonation and unknown key-share

attacks.

i

Zusammenfassung

In dieser Arbeit wird die erste maschinengestützte formale Analyse des WireGuard-

Protokolls im Computational Modell vorgestellt. WireGuard ist ein neuer Virtual Private

Network (VPN) Tunnel, der von Jason A. Donenfeld als Freie-Software-Projekt entwi-

ckelt und bald o�ziell in den Linux-Kernel integriert wird. Unveri�zierte Protokolle und

unveri�zierter Code im Kernel könnten schwerwiegende Sicherheitslücken hervorrufen,

weswegen die hier vorgestellte Analyse sehr wichtig ist. WireGuard tritt an um die mo-

mentan verbreiteten VPN-Lösungen OpenVPN und IPsec zu ersetzen. Einige Analysen

haben in der Vergangenheit Sicherheitsprobleme dieser Systeme herausgearbeitet. Diese

resultieren unter anderem aus deren Zusammensetzung aus mehreren Schichten, sowie

der Vielzahl an verfügbaren Protokollversionen und kryptographischen Primitiven.

WireGuard bricht mit dieser Flexibilität. Es nutzt ein festes Protokoll, das direkt auf UDP

aufsetzt und dem Benutzer keine Freiheit in der Wahl der kryptographischen Primitive

gibt. Es basiert auf dem kryptographischen Protokollframework Noise, das Di�e-Hellman-

basierte Schlüsselaustauschprotokolle (informell) standardisiert. WireGuard ergänzt dies

mit einem erweiterten Replayschutz, Identitätsschutz und Schutz gegen Distributed Denial

of Service (DDoS) Angri�e. Der Identitätsschutz macht einerseits WireGuard-Paketströme

verschiedener Nutzer auf kryptographischer Ebene ununterscheidbar. Andererseits wird

garantiert, dass Endpunkte nur auf authenti�zierte Pakete antworten. Ohne Kenntnis

der kryptographischen Identität eines Servers kann dieser deswegen nicht zu einer An-

wort gebracht werden. Damit wird auch ein Abscannen des gesamten IP-Adressraumes

nach WireGuard-Endpunkten unmöglich. Unter Last können Endpunkte einen Cookie-

Mechanismus verwenden, der den Kommunikationspartner zwingt, für jedes Paket einen

Roundtrip zu investieren.

Die hier vorgestellte Analyse �ndet im Feld der Authenticated Key Exchange (AKE)

Protokolle zwischen zwei Parteien statt, bei denen Langzeit- und Ephemeralkeys eingesetzt

werden. WireGuard kann zusätzlich einen zuvor ausgetauschten symmetrischen Schlüssel

in den Schlüsselaustausch ein�ießen lassen. Der in dieser Arbeit verwendete Beweisas-

sistent CryptoVerif arbeitet im Computational Modell und erzeugt ausgehend von einem

initialen Sicherheitsspiel einen Game-Hopping-Beweis unter Führung des Anwenders. Der

Beweis ist für eine beliebige Anzahl paralleler Protokollsessions gültig, die polynomiell im

Sicherheitsparameter ist. CryptoVerif berechnet eine asymptotische Schranke für das Bre-

chen der Sicherheitseigenschaften. Die berechnete Formel ist detailliert genug, damit durch

Einsetzen von konkreten Parametern und Laufzeiten eine exakte Sicherheitswahrschein-

lichkeit berechnet werden kann. In dieser Arbeit wird ein Angreifermodell vergleichbar

zu denen in bewährten Sicherheitsmodellen wie eCK und ACCE verwendet, bei dem

der Angreifer alle möglichen im Protokoll verwendeten Schlüssel kompromittieren darf.

Nur Szenarien, in denen das Protokoll trivialerweise gebrochen werden könnte, werden

ausgeschlossen. WireGuard verwendet eine Kette von HKDF-Aufrufen um symmetrische

iii

Schlüssel abzuleiten. In dieser Arbeit werden diese Ketten als Random Oracle modelliert

und dieser Ansatz mit einem Indi�erentiability-Beweis gerechtfertigt. CryptoVerif kann

Secrecy und Korrespondenzen beweisen. Abfragen der ersten Art werden in dieser Arbeit

verwendet um Message Secrecy, Forward Secrecy und eine weitere Secrecy-Eigenschaft

für WireGuard zu beweisen. Korrespondenz-Abfragen werden verwendet um Korrektheit

des Protokolls, gegenseitige Authenti�zierung, sowie Widerstand gegen Key Comprimise

und Unkown Key-Share Angri�e zu beweisen. Damit werden in dieser Arbeit alle Secrecy-

und Korrespondenz-Eigenschaften im Computational Modell bewiesen, die bereits mit

dem Beweisassistent Tamarin im symbolischen Modell bewiesen wurden. Einzig für den

Fall des Kompromats beider Ephemeral Keys ist es dem Autor dieser Arbeit noch nicht

gelungen, rechtzeitig einen Beweis zu �nden. Für die bewiesenen Eigenschaften wird die

asymptotische Schranke angegeben.

iv

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. Definitions of Cryptographic Primitives and Properties of Key Exchange Protocols 5
2.1. Cryptographic Primitives . 5

2.2. Authenticated Key Exchange Protocols 12

2.2.1. Security Properties of Authenticated Key Exchange 14

3. TheWireGuard Virtual Private Network Protocol 17
3.1. The Noise Protocol Framework . 17

3.2. Protocol Messages and Key Derivation 19

4. Proofs of Cryptographic Properties with CryptoVerif 25
4.1. Introduction to Proofs Based on Sequences of Games 25

4.2. Introduction to CryptoVerif . 26

4.2.1. Syntax and Semantics . 27

4.2.2. How CryptoVerif Checks if Queries are Satis�ed 28

4.3. A Security Model for WireGuard in CryptoVerif 31

4.3.1. Modelling the Cryptographic Primitives 31

4.3.2. Modelling the Protocol Messages, Timestamps and Nonces 58

4.3.3. Execution Environment . 67

4.3.4. Trivial Attacks, Session Cleanness, and Partnering De�nition . . 75

4.3.5. Security Queries . 77

4.4. Description of the Proof . 79

4.5. Results and Discussion of the Model . 82

5. Conclusion and Future Work 85

Bibliography 87

Acknowledgements 93

A. Appendix 95
A.1. Proofs for the Di�erent Compromise Scenarios 95

A.2. Advantages to Break Secrecy in Di�erent Compromise Scenarios 99

A.3. Running the Proofs in CryptoVerif . 99

v

1. Introduction

This thesis is the �rst formally veri�cation of WireGuard and a subset of the Noise Protocol

Framework under the computational model [28, 29]. Formal veri�cation is necessary for

applications like Wireguard because they have kernel-level access to the user’s computer.

In detail, this thesis is connected to a variety of currently undergoing research and devel-

opment e�orts: The WireGuard Virtual Private Network, the Noise Protocol Framework,

and the larger e�ort to pursue the mechanisation of proofs as a means of precise formal

analysis of protocols.

WireGuard [28, 29] is a recent development in the �eld of Virtual Private Networks

(VPN), started by Jason A. Donenfeld to create a replacement for current VPN solutions like

OpenVPN and L2TP VPNs using IPSec. Over the last years, these existing systems received

several security analyses: The �rst version of IPSec and the Internet Key Exchange protocol

IKEv1 were evaluated by Ferguson and Schneier in 1999 [32]. They mainly critizise the

complexity of the protocol but also present several design �aws harming security. A more

recent analysis of IKEv2 by Cremers [22] in 2011 shows that the updated protocol still

doesn’t meet all security properties it was designed for. OpenVPN, being based upon TLS,

basically inherits all its security and complexity challenges as well as client certi�cate

authentication. However with the SWEET32 attack [9] there is security research targeted

directy at OpenVPN (and TLS). Besides VPN protocol security, there is research taking into

account the whole system of a VPN user, analysing leakage of IPv6 packets and hijacking

of DNS [50] – however, these kinds of attacks are out of scope of this work.

WireGuard’s motivation is to provide a simpler, faster and more secure alternative

to these existing systems, where simpler means at the same time simpler in protocol

design and simpler to implement. The statements simpler and faster are backed by the

fact that Donenfeld’s implementation consists of less than 4000 lines of code (excluding

cryptographic primitives), and by performance measurements comparing WireGuard,

IPsec and OpenSSL. Work is already in progress to integrate WireGuard into the Linux

kernel,
1

which creates a high incentive to verify WireGuard’s claim for it to be secure, and

thus the motivation to conduct thorough formal analysis of both the cryptographic design

as well as the implementation. If WireGuard introduced a security �aw into kernel space,

the impact would be devasting.

The cryptographic key exchange protocol used in WireGuard is built upon the IKpsk2

protocol from the Noise Protocol Framework which is an informal standardisation

e�ort for cryptographic two-party protocols led by Trevor Perrin [49]. The Noise Protocol

Framework de�nes in just 47 pages a concise and yet powerful language to describe

protocols based on Di�e-Hellman key agreement that can use longterm and ephemeral

1https://lkml.org/lkml/2017/11/10/666 – a mailing list post by Donenfeld summarising the state of the

kernel patches

1

https://lkml.org/lkml/2017/11/10/666

1. Introduction

keys. This de�nition is precise in a way that besides the choice of the concrete Noise

protocol and the employed cryptographic primitives – which both are indicated by a short

Noise protocol name like Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s – there is no room

left for ambiguous interpretation from implementors. WireGuard can so far be seen as

the best use-case for a Noise protocol for di�erent reasons: It is developed as a free and

open source software project which makes it possible to study its use of Noise easily, and

it will have a huge impact as soon as it is distributed within the Linux kernel. In terms

of numbers of users there is another, larger adopter of a Noise protocol: WhatsApp uses

Noise Pipes to secure client-server communication rather than TLS, which boosts the user

count of the Noise protocol up to a billion [54, 53].

Existing Proofs. There are two conceptually di�erent models in which security of a

cryptographic protocol can be proved: The symbolic and the computational model. In

the symbolic model, cryptographic primitives are considered perfect and the attacker

is a Dolev-Yao attacker [27]. This means, as an example, that a ciphertext can only be

decrypted if the right key is known. In this model, logical �aws and protocol traces can be

found that lead to the violation of a security property. The computational model considers

a more realistic attacker, described as a probabilistic Turing machine, and primitives that

are not perfect, but are broken with a certain probability [33]. This permits to estimate

a probability that security properties of the entire protocol can be broken, and, more

constructively, to choose parameters like key sizes to keep this probability negligible in a

real-world scenario.

While in [49], Perrin does de�ne desirable cryptographic security properties for Noise

protocols and lists for some of them which properties they achieve, no formal proofs are

given to support these claims.

Currently, a comprehensive symbolic analysis by Nadim Kobeissi is underway verifying

all claims stated by Perrin using the ProVerif protocol veri�er, for arbitrary protocols

expressed in the language de�ned by Noise. The models are generated entirely from the

token-based language. A website presenting the results has recently been made available.
2

Donenfeld and Milner [30] did a symbolic analysis of WireGuard’s protocol, that is Noise

IKpsk2 with the additions made for DDoS protection. In their analysis they use Tamarin

and are able to prove the properties of the underlying Noise protocol plus a notion of

identity hiding and session uniqueness under the symbolic model.
3

The only computational

analysis we are aware of is from Dowling and Paterson [31]. They provide a manual game

hopping proof of WireGuard’s protocol based on the PRF-ODH assumption. More precisely,

their proof is for a slightly di�erent but morally equivalent variant of the protocol: The

authentication guarantee WireGuard gives only holds after the responder received the �rst

transport data message from the initiator. This message serves as key con�rmation and

essentially interweaves key exchange and transport data phases.
4

This means the entire

protocol cannot be proven in security models like CK [15], eCK [42] and eCK-PFS [23]:

They are based on real-or-random key indistinguishability, which cannot be proven if

2https://noiseexplorer.com/
3
In fact, Donenfeld maintains a page on WireGuard’s project website collecting all formal results, which

underlines the importance the project dedicates to formal methods.

4
“Record layer” in TLS terms.

2

https://noiseexplorer.com/

the key is used in the protocol.
5

Security models like ACCE [36], originally created to

analyse TLS, permit to reason about protocols that internally use the key calculated by a

key exchange. Instead of the keys, ACCE looks at the semantic security of the messages

exchanged encrypted using the key: In the test session, a message indistinguishability

game asks the attacker to decide which one of two provided plaintexts was encrypted.

This model certainly is more involved and complex and seems to be generally avoided

by cryptographers.
6

For the same reason, Dowling and Paterson decided to analyse a

variant of WireGuard in an eCK model: They add a small key con�rmation message to the

protocol that permits to cleanly separate key exchange and the usage of the key. Because

WireGuard includes the possibility to use a pre-shared key to strengthen the key exchange,

they extend eCK-PFS to capture this notion and name their model eCK-PFS-PSK [31].

Our contribution. We contribute mainly a mechanised computational analysis of the

WireGuard protocol. We say mainly, because logically our analysis starts with a manual

proof of indi�erentiability of a chain of HKDF calls from random oracles. In contrast to

Dowling’s and Paterson’s analysis, we model the entire protocol and use the message

indistinguishability approach. We use the CryptoVerif proof assistant [10] that permits to

�nd game hopping proofs with a greater level of automation compared to EasyCrypt [3,

2], the only other major tool working in the computational model. EasyCrypt is more used

for cryptographic primitives than protocols because of its more detailed ability to express

transformations between games but at the same time the need for the user to formulate

these games manually. CryptoVerif works on the level of assumptions on cryptographic

primitives, and is for example currently not able to use the PRF-ODH assumption. It would

require an extension of the code base to include it. This is one reason why we use the

ROM-GapDH assumption. Another reason is that once the analysis of WireGuard is done,

we can easily adapt the proof to other Noise protocols, and we believe that some of the

Noise protocol variants might not be provable under PRF-ODH.

We want to motivate the use of proof assistants to avoid errors and improve readability of

proofs. The problem of errors in proofs is real: A classic example is the Needham-Schroeder

protocol that was published in 1978 [47]. It had a proof published in 1989 [13], but then an

attack found using formal methods in 1995 [44, 45]. The Dual EC random bit generator had

a serious security problem that was suspected to be a backdoor in 2014 [34]. The reasons

for proof errors are thus manifold, including psychological bias when desiring to prove

security of a system and not to �nd an attack, and overwhelmingly large state spaces of

protocols that defy the capacity of a manual analysis. Security proofs are needed in order

to understand the security reductions and assumptions of a system. Back to the technical

aspects, game-based proofs are broadly viewed as a means to facilitate cryptographic

security proofs of protocols [52, 6]. With more complex protocols like TLS and WireGuard

however, even game-based proofs tend to get long, which makes it hard to proofread

them. In 2004, Bellare and Rogaway use very clear words to describe how they perceive

the situation: “In our opinion, many proofs in cryptography have become essentially

unveri�able. Our �eld may be approaching a crisis of rigor.” [6]. Finally, agreeing with

5
The problem here is that the attacker could simply test if it can decrypt the key con�rmation message

with the key provided by the test oracle. If yes, it received the real key, if not it received a random key.

6
This model is also usually avoided by protocol designers. However, the wish for more e�cient protocols

seems to demand the interweaving of key exchange and transport data phase.

3

1. Introduction

Halevi [35], they repeat his call for the creation of “automated tools, that can help write

and verify game-based proofs” [35, 7].

This thesis aligns with the previous and ongoing projects done in the Prosecco research

team at Inria. There has been work on the Signal protocol [38] and work on TLS [8],

that both conduct symbolic and computational analysis of a real-world protocol that will

eventually lead to the development of formally veri�ed implementations using a language

like F*. In the case of WireGuard, this approach is especially intruiging because of the

possibility to integrate formally veri�ed code into the Linux kernel. In general, establishing

the formal link between a symbolic and computational analysis and a formally veri�ed

implementation is a larger ongoing research project.

Structure of the Thesis. In Chapter 2, we de�ne the cryptographic primitives important

for this work and give an overview of security models and properties for key exchange

protocols. In Chapter 3, we describe the WireGuard VPN protocol and the Noise Protocol

Framework. Chapter 4 contains our contribution, �rst giving an introduction into the proof

technique and the tool used, then a description of our model of WireGuard in CryptoVerif

and �nally the results we obtained. In Chapter 5, we conclude and discuss future work.

4

2. Definitions of Cryptographic Primitives
and Properties of Key Exchange
Protocols

In this chapter we de�ne the basic cryptographic notions needed for this work, and for

some of them brie�y mention where and why they are used in WireGuard. Unless stated

otherwise, the de�nitions originate from [37].

When discussing security in the computational model, which we de�ne more thouroughly

later, we need a notion of negligible probabilities.

De�nition 1 (Negligible Function). A function f from the natural numbers to the non-

negative real numbers is negligible if for every positive polynomial p there is an N such

that for all integers n > N it holds that f (n) < 1

p(n) .

Proposition 1. Let negl
1

and negl
2

be negligible functions. Then,

1. The function negl
3

de�ned by negl3(n) = negl1(n) + negl2(n) is negligible.

2. For any positive polynomialp, the function negl
4

de�ned by negl
4
(n) = p(n)·negl

1
(n)

is negligible.

The security parameter n, or 1
n

in unary notation, captures the fact that cryptographic

primitives are usually con�gurable in their key size and length of ciphertexts to name only

two possibilities. The security parameter 1
n

is, unless stated di�erently, always an implicit

parameter to cryptographic primitives in the rest of this document. A cryptographic

system is asymptotically secure if the probability of a successful attack is a negligible

function in the security parameter 1
n
. That is, there is a con�guration with key lengths etc.

such that the attack probability is negligible and so the primitive can be considered secure.

2.1. Cryptographic Primitives

MessageAuthenticationCode (MAC) MACs serve to provide authenticity of messages, that

is, an attacker cannot modify or create a message such that the recipient thinks it comes

from a legitimate sender. For MACs, authenticity includes integrity. In WireGuard, MACs

are used for protection against distributed denial of service (DDoS) attacks.

5

2. De�nitions of Cryptographic Primitives and Properties of Key Exchange Protocols

De�nition 2 (Message Authentication Code). A message authentication code (MAC)

consists of three probabilistic polynomial-time algorithms (Gen,Mac,Vrfy) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1
n

and

outputs a key k with |k | ≥ n.

2. The tag-generation algorithm Mac takes as input a key k and a messagem ∈ {0, 1}∗,
and outputs a tag t . We write this as t ← Mack(m).

3. The deterministic veri�cation algorithm Vrfy takes as input a key k , a messagem,

and a tag t . It outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid.

We write this as b := Vrfyk(m, t).

It is required that for every n, every key k output by Gen(1n), and every m ∈ {0, 1}∗, it

holds that Vrfyk(m,Mack(m)) = 1.

The security of a MAC can be de�ned in the following way:

De�nition 3 (Existentially Unforgeable under Adaptive Chosen-Message Attacks). A

message authentication code Π = (Gen,Mac,Vrfy) is existentially unforgeable under an
adaptive chosen-message attack, or just secure, if for all probabilistic polynomial-time

adversaries A, there is a negligible function negl such that:

Adveuf−cma

MAC,A (n) = Pr

[
MacforgeA,Π(n) = 1

]
≤ negl(n) ,

where Macforge is given by the following game:

1. A key k is generated by running Gen(1n).

2. The attackerA is given input 1
n

and oracle access toMack(·). The attacker eventually

outputs (m, t). Let Q denote the set of all queries that A asked its oracle.

3. A succeeds if and only if Vrfyk(m, t) = 1 andm < Q. In that case the output of the

experiment is de�ned to be 1.

However, MACs are used in a non-standard way in WireGuard: The keys used depend

entirely on public information, like the recipient’s public key. The properties achieved by

this construction will be brie�y discussed in Section 3.2. In this work, we do not prove

any security properties of the DDoS protection. Thus, we include a security de�nition of

MACSs only for completeness.

Collision Resistant Hash Function Hash functions are commonly used to securely com-

press bitstrings of arbitrary length down to a �xed length. We de�ne them below, and the

de�nition of secure. WireGuard uses the hash function BLAKE2 in various places: A hash

of the session’s transcript is used as additional data to all ciphertexts, and BLAKE2 is used

to instantiate HMAC and �nally HKDF, which are de�ned later in this section.

6

2.1. Cryptographic Primitives

De�nition 4 (Hash Function). A hash function (with output length l) is a pair of proba-

bilistic polynomial-time algorithms (Gen,H) satisfying the following:

• Gen is a probabilistic algorithm which takes as input a security parameter 1
n

and

outputs a key s . We assume that 1
n

is implicit in s .

• H takes as input a key s and a bitstring x ∈ {0, 1}∗ and outputs a bitstring H s(x) ∈
{0, 1}l(n) (where n is the value of the security parameter implicit in s).

De�nition 5 (Collision Resistant Hash Function). A hash function Π = (Gen,H) is

collision resistant if for all probabilistic polynomial-time adversariesA there is a negligible

function negl such that

Advcoll−res

HASH,A(n) = Pr

[
HashcollA,Π(n) = 1

]
≤ negl(n)

where HashcollA,Π(n) is as follows:

1. A key s is generated by running Gen(1n).

2. The attacker A is given s and outputs x ,x′.

3. The output of the experiment is de�ned to be 1 if and only if x , x′ and H s(x) =
H s(x′). In such a case we say that A has found a collision.

Note that hash functions are here de�ned as always having a key. However, in practice

usually unkeyed hash functions are used, and this is not a problem because �nding an

actual collision is computationally hard.

Hash-BasedMessageAuthenticationCode HMAC is an industry standard for a hash-based

MAC, that is very e�cient and easy to implement. The interest of HMAC is the domain

extension of MACs to arbitrary length bitstrings. HMAC is resistant against extension

attacks, which is not the case for naive constructions using widely available hash functions

that are mostly based on the Merkle-Damgård construction. We skip the details of the

Merkle-Damgård construction, because BLAKE2 (the hash function used in WireGuard)

is not constructed using Merkle-Damgård. The reason HMAC is used in WireGuard is

because the Noise Protocol Framework is speci�ed for di�erent hash functions, and thus

needs to be resistant against extension attacks in general.

De�nition 6 (HMAC). Let H be a hash function. Let opad and ipad be �xed constants of

length n′. De�ne a MAC as follows:

• Gen: on input 1
n
, uniformly choose and return k ∈ {0, 1}n

′

.

• Mac: on input a key k and a messagem ∈ {0, 1}∗, output

t := H ((k ⊕ opad)‖H (k ⊕ ipad‖m)) .

• Vrfy: on input a key k , a message m ∈ {0, 1}∗, and a tag t , output 1 if and only if

t = H ((k ⊕ opad)‖H (k ⊕ ipad‖m)).

7

2. De�nitions of Cryptographic Primitives and Properties of Key Exchange Protocols

Key Derivation Function Key derivation functions permit to create uniformly distributed

bitstrings for use as shared keys, from data that is not necessarily uniformly distributed.

Also, they permit to securely adapt the length of existing key material to the length required

by a cryptographic primitive. HKDF is a particular key derivation function de�ned from

HMAC in [40]:

De�nition 7 (HKDF). The HKDF key derivation function is de�ned as follows:

HKDFn(salt, key, info) = k1‖. . . ‖kn where

prk = HMAC(salt, key)
k1 = HMAC(prk, info‖0x00)

ki+1 = HMAC(prk,ki ‖info‖i), with 1 ≤ i < n

salt is the extractor salt which may be null or constant, key is the source key material, and

info is a “context information” string that can be used to bind key-related information to

the produced key material. The variable i is a 1 byte value, and thus HKDFn can return up

to 256 blocks.

In WireGuard indeed, info is empty. HKDF is used in a chaining construction to contin-

uously include key material into a �nally extracted shared key.

AuthenticatedEncryptionwith Additional Data Authenticated Encryption with Additional

Data (AEAD) is a shared key encryption scheme that guarantees secrecy and authentication.

More precisely, it encrypts and authenticates messages, and it authenticates some additional

data, usually called a header. Decryption in an AEAD scheme is de�ned in such a way

that it returns only an error symbol in the case of failed authentication, and the plaintext

in case of successful authentication.

De�nition 8 (Authenticated Encryption with Additional Data [51]). We de�ne an au-
thenticated encryption scheme with associated data (an AEAD scheme) as a three-tuple

of algorithms Π = (KeyGen, Enc,Dec). Associated to Π are sets of bitstrings for nonces

N = {0, 1}n, messagesM ⊆ {0, 1}∗, and headersH ⊆ {0, 1}∗.The key space K is a �nite

nonempty set of bitstrings. The key generation algorithm KeyGen(1n) takes the security

parameter as argument and returns K ∈ K . The encryption algorithm Enc is a determinis-

tic algorithm that takes bitstrings K ∈ K and N ∈ N and H ∈ H and M ∈ M. It returns a

bitstring C = Enc(K ,N ,H ,M). The decryption algorithm Dec is a deterministic algorithm

that takes bitstrings K ∈ K , N ∈ N , H ∈ H , and C ∈ {0, 1}∗. It returns Dec(K ,N ,H ,C),
which is either a bitstring inM or the distinguished symbol ⊥. We require correctness

by Dec(K ,N ,H , Enc(K ,N ,H ,M)) = M for all K ∈ K,N ∈ N ,H ∈ H and M ∈ M.

|Enc(K ,N ,H ,M)| = l(|M |) for some linear-time computable length function l .

In [51], a security de�nition is also given, based on IND$-CPA and INT-CTXT. Cryp-

toVerif models AEAD using IND-CPA and INT-CTXT. We therefore de�ne these two. Note

that IND-CPA is a weaker security notion than IND$-CPA. In [4, 5], these are de�ned for

authenticated encryption (without additional data). In this work, we adapt their de�nition

for IND-CPA for AEAD as follows:

8

2.1. Cryptographic Primitives

De�nition 9 (Indistinguishability under Chosen Plaintext Attack for AEAD [4, 5]). An

AEAD schemeΠ = (KeyGen, Enc,Dec) is IND-CPA secure if for all probabilistic polynomial-

time algorithms A the advantage of winning the following game is negligible.

• The challenger chooses a key K ← KeyGen and a random bit b←$ {0, 1}, and sets

L← ∅.

• A has access to a left-or-right encryption oracle LR(N ,H ,M0,M1) that, provided

with a nonce N ∈ N , a header H ∈ H , and two equal-length messages M0,M1 ∈ M,

returns ⊥ if N ∈ L and thus N was already used in a query to this oracle, and

C ← Enc(K ,N ,H ,Mb) otherwise. In the latter case it adds N to L before returning.

• A �nally outputs a bit d and wins the game if d = b.

We de�ne Advind−cpa

AEAD,A(n) = Pr[d = b] − 1

2
.

This de�nition clari�es that no guarantees are given in case of nonce reuse. Also, this

de�nition assumes that messages of equal length are encrypted to ciphertexts of equal

length. If the two provided messages do not have equal length, this security de�nition

does not guarantee anything.

De�nition 10 (Ciphertext Integrity for AEAD [4, 5]). An AEAD scheme Π = (KeyGen,

Enc,Dec) is INT-CTXT secure if for all probabilistic polynomial-time algorithms A the

advantage of winning the following game is negligible.

• The challenger chooses a key K ← KeyGen, and sets S,L← ∅.

• A has access to an encryption oracle Enc(N ,H ,M) that, provided with a nonce

N ∈ N , a header H ∈ H , and a message M ∈ M, returns ⊥ if N was already used

in a query to this oracle, and C ← Enc(K ,N ,H ,Mb) otherwise. In the latter case it

adds N to L and (C,N ,H) to S .

• A has access to a veri�cation oracle VF(N ,H ,C) that, provided with a nonce N ∈ N ,

a header H ∈ H , and bitstring C , proceeds as follows: It sets M ← Dec(K ,N ,H ,C).
If M , ⊥ and (C,N ,H) < S , it sets win← true. Finally, it returns (M , ⊥).

• A �nally calls the oracle Finalise that returns the bit win.

We de�ne Advint−ctxt

AEAD,A(n) = Pr[win = true].

Note that the attacker also wins if it can get the veri�cation oracle to accept a ciphertext

produced by the encryption oracle with di�erent nonce or header.

Random Oracle The random oracle is the idealisation of a hash function. We use the

following de�nition:

9

2. De�nitions of Cryptographic Primitives and Properties of Key Exchange Protocols

De�nition 11 (Random Oracle). A random oracle H is a function with arbitrary length

input, possibly separated into multiple input variables, and with a bitstring output of

length l . It behaves as follows:

• If H is called with arguments it has never seen before, it returns a new uniformly

random value from the output space.

• If H is called with arguments it was called with before, it returns the same result.

This implies that without calling H , its result for a tuple of arguments can only be guessed

with probability 1/2l .

A random oracle is not actually implemented by a hash function as it would require

exponential storage and exponential time to evaluate output, which is impractical for hash

functions in real world usage [14]. We can however create proofs with a model of the

world in which random oracles exist, the random oracle model. In contrast, the model that

does not assume the existence of random oracles is the standard model. If a cryptographic

system can be proved secure in the standard model, this is a stronger property than a proof

in the random oracle model. However, there are cryptographic systems that cannot be

proved secure in the standard model. The opinions of cryptographers are split about the

question of the utility of a security proof in the random oracle model, but many agree that

it is better than no proof at all, as a proof with the random oracle model still can prove

attacks are not possible that are not dependent on hashing. Therefore, we will work with

the random oracle model in this thesis.

Di�ie-Hellman Key Exchange In 1976, Di�e and Hellman discovered the Di�e-Hellman

key exchange protocol [24]. Its security is based on assumptions we introduce in the

following. The protocol is described at this point to motivate these de�nitions.

We let G denote a generic, polynomial-time, group-generation algorithm. This is an

algorithm that, on input 1
n
, outputs a description of a cyclic group G, its order q (with

|q | = n), and a generator д ∈ G.

De�nition 12 (The Di�e-Hellman Key Exchange Protocol). Two parties A and B have as

common input the security parameter 1
n
. The protocol runs as follows:

1. A runs G(1n) to obtain (G,q,д).

2. A chooses a uniform x ∈ Zq , and computes u := дx .

3. Alice sends (G,q,д,u) to Bob.

4. B receives (G,q,д,u). He chooses a uniform y ∈ Zq , and computes v := дy . B sends

v to A and outputs the key kB := uy = дxy .

5. A receives v and outputs the key kA := vx = дxy .

This protocol is a key exchange protocol secure against a passive attacker, if the decisional

Di�e-Hellman assumption holds. On the way to de�ne this assumption, we �rst de�ne

the discrete-logarithm experiment, that is the base for all following assumptions.

10

2.1. Cryptographic Primitives

De�nition 13 (The Discrete-Logarithm Experiment DLogA,G(n)). 1. RunG(1n) to ob-

tain (G,q,д), where G is a cyclic group of order q (with |q | = n), and д is a generator

of G.

2. Choose a uniform h ∈ G.

3. A is given G,q,д,h, and outputs x ∈ Zq .

4. The output of the experiment is de�ned to be 1 if дx = h, and 0 otherwise.

De�nition 14 (The Discrete-Logarithm Assumption). We say that the discrete-logarithm
assumption holds relative to G if for all probabilistic polynomial-time algorithms A there

exists a negligible function negl such that Pr

[
DLogA,G(n) = 1

]
≤ negl(n).

Based on this assumption, we de�ne more involved assumptions that are used in security

proofs.

De�nition 15 (The Computational Di�e-Hellman Assumption). We say that the CDH
assumption holds relative to G if for all probabilistic polynomial-time algorithms A the

probability to win the following game is negligible. The game runs as follows:

• The challenger uniformly chooses two random elements x ,y ∈ Zq and calculates

u = дx ,v = дy,w = дxy and gives the triple (д,u,v) to A.

• A outputs some w′ ∈ G.

A wins the game if w′ = w . We de�ne Advcdh

G,A(n) = Pr[w′ = w].

The computational Di�e-Hellman assumption is stronger than the discrete logarithm

assumption. The CDH assumption guarantees that a passive adversary cannot compute

the shared key in the Di�e-Hellman protocol.

De�nition 16 (The Decisional Di�e-Hellman Assumption). We say that the DDH as-
sumption holds relative to G if for all probabilistic polynomial-time algorithms A there is

a negligible function negl such that

Advddh

G,A(n) = Pr[A(G,q,д,дx ,дy,дz) = 1] − Pr[A(G,q,д,дx ,дy,дxy) = 1] ≤ negl(n) ,

where in each case the probabilities are taken over the experiment in which G(1n) outputs

(G,q,д), and then uniform x ,y, z ∈ Zq are chosen. (Note that when z is uniform in Zq ,

then дz is uniformly distributed in G.)

The decisional Di�e-Hellman assumption is stronger than the computational Di�e-

Hellman assumption. For the Di�e-Hellman protocol, the DDH assumption guarantees

that a passive adversary cannot distinguish the computed key from a randomly cho-

sen key. This is needed to show its semantic security based on a real-or-random key

indistinguishability game.

Gap problems have been de�ned in [48]. In some Di�e-Hellman based protocols,

parties expose a Decisional Di�e-Hellman oracle: The attacker can test if a party responds

11

2. De�nitions of Cryptographic Primitives and Properties of Key Exchange Protocols

to a forged protocol message. Basing the security of these protocols only on the CDH

assumption would thus be a too weak assumption.

De�nition 17 (The Gap–Di�e-Hellman Problem). We say that the GDH problem is

hard relative to G if for all probabilistic polynomial-time algorithms A the probabability

Advcdh

G,A(n) to solve the CDH problem for a given triple (д,дx ,дy) is negligible even with

access to a Decisional Di�e-Hellman Oracle (which answers whether a given quadruple

(д,дx ,дy,дxy) is a Di�e-Hellman quadruple or not). We call the according probability and

advantage Advgdh

G,A
(n).

The authors of [48] argue in their paper why the GDH assumption is reasonable, and

it has proven to be useful in practice to prove the security of primitives that cannot be

proven under only decisional assumptions and protocols where access to such an oracle

for forged messages is practical.

2.2. Authenticated Key Exchange Protocols

Authenticated Key Exchange (AKE) protocols permit parties to securely agree on a shared

key. For instance, these protocols can be used to establish a secure channel.

De�nition 18 (Party). A party is identi�ed by its long-term public key. We call a party

honest if they follow the protocol. We call a party dishonest if they may not follow the

protocol.

Establishing trust in long-term keys, that is linking them to identities, is out of scope of

our analysis: We consider long-term keys to be known by all parties and we consider that

public keys and identities are linked by some other protocol, like a certi�cation authority.

De�nition 19 (Session, Partner Session (informal)). A party may run the considered

authenticated key exchange protocol with multiple parties sequentially and in parallel,

and also sequentially and in parallel with a same party. Each execution of the protocol is

called a session. The partner session to a session started by a party A is the session of the

other honest party B, A intends to talk to.

A session does not necessarily have a partner session, that is, if the session is established

with a dishonest party.

De�nition 20 (Ephemeral Keys). Ephemeral keys are keys that are freshly chosen per

session by the parties.

Ephemeral keys are an essential ingredient for a protocol to satisfy the properties we

de�ne later.

We limit ourselves to the case of two parties, as that is the assumption used in WireGuard.

There is also published research for the case of more than two parties, but for these

the term “group key exchange” is usually used. Key exchange protocols are therefore

bootstrapping the use of shared (symmetric) key cryptography. The de�nition of secure

12

2.2. Authenticated Key Exchange Protocols

has evolved over the last two decades and now includes a variety of interesting and

important properties that can be summarised under the notions secrecy and authentication.

Secrecy divides into key secrecy, message secrecy, forward secrecy, and post-compromise

secrecy. Authentication divides further into mutual authentication, resistance against key

impersonation attacks, and resistance against unknown key-share attacks. We will de�ne

these properties formally later in this section. Besides stating that a certain protocol has a

subset of these properties, it is equally important to say in which attacker model these

statements hold. An attacker model describes the capabilities of the attacker. The Dolev-

Yao attacker (the symbolic model) vs. the probabilistic Turing machine (the computational

model) was brie�y mentioned in the introduction and we will elaborate on this now.

In the symbolic model, a Dolev-Yao attacker has access to the entire network, and can

read, delay, reorder, block and replay all messages transmitted over it. It can also calculate

and inject its own messages into the network. These messages can be calculated using

everything transmitted over the network so far, and the cryptographic primitives available

in the protocol. Calculation is limited: The primitives are modeled as perfect, that is, a

calculation succeeds if and only if the attacker knows the exact arguments. In the case of

encryption this means a message can only be decrypted if the attacker has the exact key

the encrypted message was originally encrypted with. That is why this attacker model

is called the symbolic model: Ciphertexts, keys, and variables in general are treated as

symbols and no knowledge about any internal structure of them can be exploited by the

attacker.

In the computational model, variables are bitstrings, which makes their internal

structure exploitable by the attacker. It is allowed to do any probabilistic polynomial

calculation. With this addition, the attacker model is much more realistic than the symbolic

model: We allow the attacker to do any calculation current computers can do. We keep

track of calculability by adding the notions of time and sizes to the model. Security is then

based on the assumption that certain problems are hard to solve for a given problem size

in a given time. The computational model therefore can model attacks not present in the

symbolic model.

We have now described how the attacker can access the network and what it can

calculate. It is left to describe what access the attacker has to the honest parties participating

in a protocol. The most important aspect to model in key exchange protocols is the

attacker’s ability to compromise keys of the parties. This models in an abstract way

what could happen in the real world in a lot of di�erent concrete attacks: A private key

could for example unintentionally be uploaded or stolen by malicious software. The more

capabilities the attacker has, the stronger is the security model. The modelling has to

be done carefully though: If the attacker has too much power, it can trivially break the

protocol. We cannot prove security in such a case, and the model would be useless. If the

attacker could for example compromise the long-term and ephemeral keys of a party’s

session, it would have all necessary information to calculate the shared secret. Such

compromise scenarios need to be excluded in a meaningful attacker model.

13

2. De�nitions of Cryptographic Primitives and Properties of Key Exchange Protocols

This is usually done by de�ning the notion of a test session:

De�nition 21 (Test Session). The attacker can choose a session as the test session. For

this session and its partner session(s), it is not allowed to conduct trivial compromise

scenarios. On all other sessions there are no limits; security models usually also expose a

Reveal query to the attacker so it can get the calculated shared key of those other sessions.

If the attacker cannot break the security property of the test session, the protocol is de�ned

as secure.

Di�erent attacker models have been proposed in the literature. Usually, a new model

strengthens a previous one and captures the needs of new protocols. In the CK model [16],

the attacker is not allowed to compromise ephemeral keys in the test session. Also, the

model does not cover resistance against key impersonation attacks. This is because sessions

that start after the parties long-term key was compromised cannot be test sessions. The

authors of [42] include these possibilities in their model called extended CK, which is

abbreviated as eCK. In [23], the model is extended to include perfect forward-secrecy (PFS),

and thus is the eCK-PFS model. The extension of the model was possible by adapting

the de�nition of partner sessions. In 2011, Cremers attempted a comparison of some of

the above mentioned and other models [21]. He showed that the models are actually

incomparable: Security in one model does not imply security in the other models. These

underlines that the space of possible models for authenticated key exchange is not yet

settled. In Section 4.3, we will elaborate on how the security notions are de�ned in our

model and brie�y outline di�erences to the other models mentioned here.

2.2.1. Security Properties of Authenticated Key Exchange

De�nition 22 (Key Secrecy). The shared key established by an authenticated key ex-

change protocol is secret, if it is only known by the eligible parties.

This is usually modeled by a real-or-random indistinguishability game: For a test session,

the attacker receives either the key calculated by the protocol, or a random key from

the same key space. If the attacker can distinguish the two cases only with negligible

probability, the protocol ensures key secrecy.

The terms secrecy and con�dentiality can be used synonymously. Key secrecy is proven

in CK and eCK-like models for protocols that do not use the shared key.

De�nition 23 (Message Secrecy). The plaintext sent encrypted over a secure channel

established by an authenticated key exchange protocol is only known by the eligible

parties.

This is usually modeled by a left-or-right ciphertext indistinguishability game. For a

test session, the attacker provides two equal-length plaintexts to the challenger. One of

them gets encrypted with the shared key of the session. If the attacker can distinguish the

two cases only with negligible probability, the protocol ensures message secrecy.

Message Secrecy is proven in ACCE-like models for protocols that use the shared

key. This is also the case for the WireGuard protocol. If we play a real-or-random key

14

2.2. Authenticated Key Exchange Protocols

indistinguishability game when the key is used by the protocol, the attacker can simply

attempt decryption of the appropriate ciphertext using the key he received. If decryption

succeeds, it received the real key, if it failed, the attacker received a random key.

De�nition 24 (Forward Secrecy). Plaintexts sent encrypted over a secure channel that

was established by an authenticated key exchange protocol before the compromise of one

or both party’s longterm keys cannot be decrypted, thus the plaintexts stay secret “forward

in time”.

This is usually modeled like key secrecy or message secrecey, by allowing compromise

of the party’s longterm keys after a test session has agreed on a key or sent a message.

De�nition 25 (Correctness). If two parties successfully complete a key exchange in

sessions that are partnered, they calculate the same key.

If a protocol satis�es this de�nition, this simply means that the protocol at least works.

De�nition 26 (Key Authentication). If a party A believes to have established a key with

a party B, then B also believes to have established this key with A.

If this property holds in both directions, this is called mutual key authentication [18].

De�nition 27 (Message Authentication, Mutual Message Authentication). If a party A
believes a message received was sent from B, then B has indeed sent this message to A.

If an authenticated protocol guarantees this for both directions, this property is called

mutual message authentication.

The following property was �rst formalised by Krawczyk for the HMQV protocol [41].

De�nition 28 (Resistance Against Key Compromise Impersonation Attacks). Suppose

the longterm key of a party A is compromised. If an attacker can execute a session with A,

successfully pretending to be any other party, this is called a key compromise impersonation
attack (KCI).

If such attacks are not possible in a protocol, it is said to be resistant against KCI.

This can be illustrated with a Di�e-Hellman key exchange based only on two longterm

keys. We have

DH(SprivA , S
pub
B) = DH(SprivB , S

pub
A) .

If the attacker knows S
priv
A , it can calculate the Di�e-Hellman function for any other party

by just using their public key.

De�nition 29 (Resistance Against Unknown Key-Share Attacks [18]). If two honest

parties A and B calculate a same shared key, and A believes to have established this key

with B, but B believes to have established the key with a third party E, this is called an

unilateral unknown key-share attack (UUKS).

A bilateral unknown key-share attack (BUKS) is an attack whereby two honest parties A
and B end up sharing a key between them but A believes it shares the key with another

15

2. De�nitions of Cryptographic Primitives and Properties of Key Exchange Protocols

party C , and B believes it shares the key with another entity D, where C is not equal to B
and D is not equal to A.

If such attacks are not possible in a protocol, it is said to be resistant against unknown

key-share attacks (UKS).

Note that mutual key authentication implies resistance against unilateral UKS. In bi-

lateral UKS, the parties C and D may or may not be the same entity, and they may or

may not be honest. Because they may be dishonest, bilateral UKS is not excluded if the

protocol guarantees key authentication: It makes no sense to make a statement about

what a dishonest party believes to have agreed upon.

16

3. TheWireGuard Virtual Private Network
Protocol

The WireGuard VPN permits two parties to establish a secure channel using a Di�e-

Hellman based key exchange protocol. It works on layer 3 and uses UDP as transport layer.

WireGuard employs a new “cryptokey routing” technique to con�gure routes to endpoints,

and provides new identity hiding and DDoS resistance features, the latter based on a cookie

reply system. The handshake is based on a longterm and an ephemeral elliptic curve key.

Security can be strengthened by an optional pre-shared symmetric key. If the handshake

fails, then the protocol needs to restart, as UDP does not permit to detect package loss.

After the handshake, the protocol running over the secure WireGuard channel, for example

TCP, can perform all its internal package loss detection techniques. WireGuard itself does

not detect package loss but only employs a sliding window technique to reorder packages.

A new handshake is performed every two minutes or after a number of sent packages

prede�ned in the speci�cation, to prevent the possibility of collision attacks on the stream

cipher.

3.1. The Noise Protocol Framework

WireGuard uses a protocol from the Noise Protocol Framework as the basis for its key

exchange protocol. The Noise Protocol Framework standardises a variety of cryptographic

two-party key exchange protocols based on Di�e-Hellman key exchange, agnostic of

the transport used. It de�nes a concise language to de�ne protocols, based on tokens

like e for ephemeral key, s for static longterm key, psk for preshared key, and two-letter

combinations of e and s that stand for Di�e-Hellman operations between keys of the

two parties: ee , es , se , ss , where the �rst letter denotes the participating key from the

initiator, and the second letter the participating key for the responder. The protocol used

by WireGuard, Noise IKpsk2, looks like follows, and we will explain the notation step by

step:

IKpsk2(s, rs):

<- s

...

-> e, es, s, ss

<- e, ee, se, psk

The �rst part are the two protocol messages at the end:

-> e, es, s, ss

<- e, ee, se, psk

17

3. The WireGuard Virtual Private Network Protocol

The �rst one, denoted by -> is sent from initiator to responder, the second one, denoted by

<- in the other direction. Noise de�nes precise processing rules for the tokens that make

up a message. These rules a�ect the CipherState, SymmetricState, and HandshakeState,

each party holds locally. Single-letter tokens like e and s , for the according public keys, are

sent over the network, and also contribute to a session transcript hash. Two-letter tokens

and psk, do not get sent over the network but get immediately mixed into a key derivation

function to derive a new symmetric key. This key is then used to encrypt the next token

that gets sent over the network. In our example, e means that the initiators ephemeral

public key gets sent in the clear to the responder. The initiators public key s however is

sent encrypted with a symmetric key derived from the es Di�e-Hellman operation. A

possible payload of the �rst protocol message is then again encrypted with a new key, that

is derived from the key material before and the ss Di�e-Hellman operation. Indeed, in

WireGuard, a timestamp is sent as payload of the �rst protocol message, encrypted with

this key. The second protocol message is handled in the same manner, although in this

example we do not elaborate on the details how the pre-shared key is mixed into the key

derivation.

The �rst two lines of the protocol description are the so-called pre-messages:

<- s

...

To be able to calculate the ss Di�e-Hellman, the initiator needs to know the responder’s

static public key. This is denoted by a message <- s that is sent from the responder to the

initiator. It is out of scope for Noise (as for WireGuard), how this message is transmitted.

It is assumed that the parties use some other protocol to establish the knowledge of the

static public key. The last part is the protocol name and the parameters:

IKpsk2(s, rs):

The protocol name, IKpsk2, can be divided into the two parts IK and psk2.

The two letters IK mean, that the initiator immediately sends its static key to the

responder in the �rst protocol message (I for immediately), and the the initiator knows

the responder’s static key beforehand (K for known). The 2 at the end of psk2 de�nes that

the pre-shared key is used at the end of the second protocol message. The parameters (s,

rs) state which values need to be given to an implementation to execute the protocol. In

this case, it is the two static keys, s for the one of the initiator, and rs the remote static

key, from the responder.

TheMotivationBehindNoise. It can be argued that the TLS protocol suite provides already

all building blocks for secure channels. However, the TLS standard is huge, and TLS

libraries are large codebases. Noise provides a lightweight and simple alternative, that can

be attractive for projects that have a speci�c need and explicitely do not need or do not

want to inherit the whole TLS stack.

Why WireGuard Chose IKpsk2. The author of WireGuard wanted to use a 1-RTT key

exchange. The XK Noise pattern would provide forward-secret identity hiding, but needs

18

3.2. Protocol Messages and Key Derivation

an addional message. To be more precise, WireGuard uses a 1.5-RTT key exchange protocol,

because the third protocol message is needed to establish mutual authentication (it proves

that the initiator controls its ephemeral key). Noise speci�es di�erent possible locations

for the pre-shared key. WireGuard chose to place it at the end, because VPN servers can

then look up the needed pre-shared key in some database after they already authenticated

the initiator based on its static long-term key.

3.2. Protocol Messages and Key Derivation

The initiator is the party that starts a protocol session by sending the �rst protocol message

to another party, which is called the responder. These roles do not in general correspond

to the typical roles of client and server in a VPN scenario, where the client is the customer

and the server is a machine of a VPN provider. While the client typically is the protocol’s

initiator for the �rst handshake, the roles might change during a longer VPN “session.”

The WireGuard protocol [29] consists of 3 protocol messages that are needed such that

mutual authentication between initiator and responder is guaranteed. It can therefore be

considered as a 1.5-RTT key exchange protocol. The third message, which is sent from

initiator to responder, is already a transport data message and can contain real data. The

authenticated encryption in this third message permits the responder to authenticate the

initiator. After these three messages, transport data messages can be exchanged in any

order between the parties. The following description of the protocol is largely based on

the original paper [29]. We leave out some technical details that are not important for the

cryptographic proof. Thus, our description must not serve as a basis for implementation.

Notation. Variables belonging to the initiator are indicated with an index i , those belong-

ing to the responder with r . The subscript asterisk ∗ means both of them. In (parts of)

messages that can be sent by both parties, if the initiator creates it, let (m,m′) = (i, r),
and if the responder creates it, let (m,m′) = (r , i). The operator ‖ means concatenation of

bitstrings. Assignments of values to variables from deterministic algorithms are denoted

with←, from probabilistic algorithms with ←$. Given an integer value n, n̂ has the value

n + 16, where 16 is the length of the authentication tag. The empty bitstring is denoted

by ϵ . 0
n

represents the all zero bitstring of length n bytes, and ρn a random bitstring of

length n bytes.

Cryptographic Primitives, Functions, and Constants. The WireGuard protocol uses the

following functions [29]:

• DH(privatekey,publickey): WireGuard uses the elliptic curve Curve25519, and this

function is the point multiplication of private key and public key, returning 32 bytes

of output.

• DH–Generate(): Generates a random Curve25519 private-public key pair, returning

a pair of 32 bytes values, (privatekey,publickey).

19

3. The WireGuard Virtual Private Network Protocol

• AEAD(key, counter ,plaintext ,authtext): The ChaCha20Poly1305 AEAD [43], its

nonce being composed of 32 bits of zeros followed by the 64-bit little-endian value

of counter .

• HASH(input): BLAKE2s(input , 32), returning 32 bytes of output.

• MAC(key, input): Keyed–BLAKE2s(key, input , 16), the keyed MAC variant of the

BLAKE2s hash function, returning 16 bytes of output.

• HMAC(key, input): HMAC–BLAKE2s(key, input , 32): the ordinary BLAKE2s hash

function used in an HMAC construction, as de�ned in Section 2.1, returning 32 bytes

of output.

• HKDFn(key, input): The HKDF function as de�ned in Section 2.1, with an empty

info bitstring.

• TIMESTAMP(): Returns the TAI64N timestamp of the current time, which is 12 bytes

of output.

• Construction: The UTF-8 string literal “Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s”,

spaces denoted by ␣.

• Identifier: The UTF-8 string literal “WireGuard v1 zx2c4 Jason@zx2c4.com”.

• Label–MAC1: The UTF-8 string literal “mac1----”.

• Label–Cookie: The UTF-8 string literal “cookie--”.

Local State. The parties calculate or receive during a protocol run, and keep as local state

(at least temporarily) the following variabes:

• Im, Im′: 32-bit indices that locally represent the current session (Im), and the other

peer of this session (Im′).

• S
priv
m , S

pub
m , S

pub
m′ : The own longterm private and public key, and the other peers

longterm public key. In Noise and WireGuard, they are called static keys and are

therefore denoted with S .

• E
priv
m ,E

pub
m ,E

pub
m′ : The own ephemeral private and public key, and the other peers

ephemeral public key.

• Q : The optional pre-shared key. If pre-shared key mode is not used, Q is set to a 32

byte bitstring of zeros.

• Hm,Cm: A hash result and a chaining key.

• T send
m ,T recv

m : Transport data symmetric keys for sending and receiving with AEAD.

• N send
m ,N recv

m : Transport data nonce counters for sending and receiving with AEAD.

20

3.2. Protocol Messages and Key Derivation

First Protocol Message. The �rst protocol message msg is sent from initiator to responder:

type← 0x1 (1 byte) reserved← 0
3

(3 bytes)

sender← Ii (4 bytes)

ephemeral← E
pub
i (32 bytes)

static (3̂2 bytes)

timestamp (1̂2 bytes)

mac1 (16 bytes) mac2 (16 bytes)

The value Ii is randomly chosen as ρ4
when preparing the message.

Ci ← HASH(Construction)

Hi ← HASH(Ci ‖Identifier)

Hi ← HASH(Hi ‖S
pub
r)

(E
priv
i ,E

pub
i)←$ DH–Generate()

Ci ← HKDF1(Ci ,E
pub
i)

Hi ← HASH(Hi ‖E
pub
i)

Ci ‖k ← HKDF2(Ci ,DH (E
priv
i , S

pub
r))

msg.static← AEAD(k, 0, Spubi ,Hi)

Hi ← HASH(Hi ‖msg.static)

Ci ‖k ← HKDF2(Ci ,DH (S
priv
i , S

pub
r))

msg.timestamp← AEAD(k, 0, TIMESTAMP(),Hi)

Hi ← HASH(Hi ‖msg.timestamp)

msg.mac1← MAC(HASH(Label–MAC1‖Spubr), msgα)

In the computation of mac1, the value msgα represents all bytes of the message prior to

mac1. We do not describe the computation of mac2, because we did not include it into our

model.

The responder can, by �rst verifying mac1, make sure that the sender knows his identity.

Note that the MAC key, besides the constant, depends on S
pub
r , which is also used in the

chained hash, which could also be used to verify this fact. However, the MAC permits to

verify that this is no randomly sent message before computing expensive DH functions.

Also, mac1 prevents a WireGuard endpoint from being detected by someone scanning the

internet.

After verifying the MAC, the responder can perform the same computations than the

initiator, just by replacing the parameters of theDH function accordingly. This will result in

the same values forCr = Ci and Hr = Hi . Note how a chaining hash of parts of the protocol

transcript is used as additional data in the AEAD. This ties each ciphertext to a message

and prevents injecting the ciphertext into other sessions. Also, with Construction and

21

3. The WireGuard Virtual Private Network Protocol

Identifier, the message is tied to a speci�c version of Noise and WireGuard, prohibiting

attacks exploiting di�erent protocol versions (where, at the moment, there no other

protocol versions yet).

In terms of the Noise protocol, the timestamp is the payload of the �rst protocol message.

The MACs are not speci�ed in Noise at all.

Second Protocol Message. This message msg is sent from the responder to the initiator as

response to the �rst protocol message:

type← 0x2 (1 byte) reserved← 0
3

(3 bytes)

sender := Ir (4 bytes) receiver := Ii (4 bytes)

ephemeral := E
pub
i (32 bytes)

empty (0̂ bytes)

mac1 (16 bytes) mac2 (16 bytes)

The value Ir is chosen randomly as ρ4
when preparing this message. The responder

calculates the message as follows:

(E
priv
r ,E

pub
r)←$ DH–Generate()

Cr ← HKDF1(Cr ,E
pub
r)

Hr ← HASH(Hr ‖E
pub
r)

Cr ← HKDF1(Cr ,DH (E
priv
r ,E

pub
i))

Cr ← HKDF1(Cr ,DH (E
priv
r , S

pub
i))

Cr ‖τ ‖k ← HKDF3(Cr ,Q)

Hr ← HASH(Hr ‖τ)

msg.empty← AEAD(k, 0, ϵ,Hr)

Hr ← HASH(Hr ‖msg.empty)

msg.mac1← MAC(HASH(Label–MAC1‖Spubi), msgα)

The MAC equally permits the initiator to protect itself from denial of service attacks.

Additionally, the second protocol message is smaller than the �rst. This way, a responder

cannot be misused as an ampli�cator for denial of service attacks. After receiving this

message, the initiator can perform the same computations, replacing the parameters to

DH accordingly.

In terms of Noise, the second protocol message has no payload, but an empty payload is

obligatory for authentication of the transcript.

Derivation of Transport Data Keys. After the second protocol message, both parties can

compute the shared key by the following computation:

(T send
i = T recv

r ,T recv
i = T send

r) ← HKDF2(Ci = Cr , ϵ) .

22

3.2. Protocol Messages and Key Derivation

Afterwards, they set the counters for the upcoming transport data messages to zero, and

securely erase the ephemeral keys and the chaining key. This erasure is necessary to

guarantee forward secrecy, because using these values, the session key could be recovered.

Transport Data Messages. The transport data messages in WireGuard serve to exchange

encrypted encapsulated packets. The responder is only allowed to send a transport data

message after the initiator has sent its �rst transport data message. This �rst transport

data message serves as key con�rmation, and proves that the initiator has control over its

ephemeral key; Intuitively, only then the initiator has sent a message that depends also on

the responder’s ephemeral key.

The inner plaintext packet is denoted by P and has length |P | bytes. Both peers can

send the following message msg:

type← 0x4 (1 byte) reserved← 0
3

(3 bytes)

receiver← Ii (4 bytes)

counter← N send
m (8 bytes)

packet (
ˆ|P | bytes)

The inner packet is �rst padded with zeros to a length that is a multiple of 16 bytes:

P ← P ‖016·d|P |/16e−|P |

The encryption is as follows:

msg.packet← AEAD(T send
m ,N send

m , P , ϵ)

And �nally, the counter gets incremented preparing for the next packet.

N send
m ← N send

m + 1

The recipient of the message decrypts using T recv
m′ and N recv

m′ , and increments the counter

after successful decryption. Besides being the nonce for the AEAD scheme, the counter

also is needed to avoid replay attacks. As messages might arrive out of order over UDP,

WireGuard employs a sliding window technique.

23

4. Proofs of Cryptographic Properties with
CryptoVerif

4.1. Introduction to Proofs Based on Sequences of Games

In Chapter 2 we already de�ned both some assumptions (like the DDH assumption) and

security properties (like IND-CPA) on the basis of games played between a challenger and

an adversary. We further describe this approach based on a tutorial paper by Shoup [52]. He

begins by saying that because the challenger and the adversary are probabilistic processes,

the game can be modeled as a probability space. Games can expose oracles to the adversary,

and that is how the challenger and the adversary communicate: Oracles receive an input,

perform a possibly probabilistic computation, and return an output. These outputs are the

random variables that the adversary sees from the probability space. An example are the

encryption and veri�cation oracles in the INT-CTXT game.

The de�nition of a security property is usually based on the probability with which

certain events take place in the game. The di�erence between this probability and some,

as Shoup calls it, target probability is called the advantage of the attacker to break the

security property. Just to give one common example, the target property would be 1/2 for

guessing a bit. If the advantage is negligible, we say that the security property holds.

Security properties for “complex” protocols can also be expressed by a game. In Sec-

tion 2.2 for example, we say that message secrecy is usually modeled as a left-or-right

message indistinguishability game. We say this is more “complex” than the games for se-

curity properties like IND-CPA, because protocols might use more than one cryptographic

primitive in a nested way. Thus, a proof of a protocol will be based on more than one

cryptographic assumption, and generally the game considered will be larger.

A widely used technique to formulate security proofs is a sequence of games [52], which

is sometimes called game hopping. Starting from the initial game, transformations are

gradually made to the game, producing a sequence of games. For each transformation

between two games, a bound needs to be speci�ed for the probability that the adversary

can distinguish the distribution of the two game’s outputs. The sequence stops at a �nal

game, where the probability that the adversary breaks the security property can be directly

bounded (for example by 0 because it can be shown that it is impossible in this game).

Starting from there, an overall probability can be calculated with which the adversary can

distinguish the initial game and the �nal game. This probability is then a bound for the

probability that the security property can be broken in the initial game.

Shoup describes three types of game transformations. Transitions based on indistin-
guishability. If an adversary could distinguish two games that di�er by such a transfor-

mation, this would mean that the adversary could also distinguish two distributions that

25

4. Proofs of Cryptographic Properties with CryptoVerif

are indistinguishable according to an assumption the proof is based on. The probability

that the adversary distinguishes the two games has then a bound by the probability with

which the assumption holds.

For example with IND-CPA, we know that an adversary cannot distinguish the oracle-

provided ciphertexts of two chosen plaintexts. Supposing part of the game is an encryption

of a plaintext possibly known by the attacker. We can then make a game transformation

and replace this encryption by the encryption of a constant value of the same length (this

is a plaintext de�nitely known by the attacker). We now have a bound for the probability

that the adversary distinguishes the distribution of ciphertexts by the probability that

the IND-CPA property does not hold for the encryption scheme: The adversary needs to

distinguish the encryption of two equal length ciphertexts; and this is exactly how we

de�ned IND-CPA.

Transitions based on failure events. Such a transition transforms a game into a

game that has the same output distribution except if a failure event occurs. The probability

that an adversary can distinguish the two games is the di�erence in probability with which

the failure event occurs on both sides. This is backed by the following lemma.

De�nition 30 (Di�erence Lemma [52]). Let A,B, F be events de�ned in some probability

distribution, and suppose that A ∧ ¬F ⇔ B ∧ ¬F . Then | Pr[A] − Pr[B] | ≤ Pr[F].

For an example of this type of transition, consider a game where a nonce-using AEAD

scheme is used. We remind that according to the security de�nition we gave in Section 2.1,

when a nonce would be reused, no guarantee is given about the security of the scheme

by the IND-CPA or INT-CTXT property. Consider a second game that is the same as the

previous but does not encrypt but abort with a failure event if a nonce is reused. The

probability that an adversary can distinguish the games is thus the probability that a nonce

is reused.

Bridging steps. These transformations do not change the output distributions, but

serve only to prepare for transitions of the other two types. They do so by changing

computations in an equivalent way, for example by reordering independent computations,

or deleting unnecessary computations.

4.2. Introduction to CryptoVerif

CryptoVerif is a proof assistant that helps to write game-based proofs. More precisely,

given the initial game and a sequence of game transformations, it automatically applies

them and transforms the game accordingly, thus creating the series of games itself. A

transformation is only done if it is applicable to the game in a cryptographically sound

way. CryptoVerif also has an automatic mode where it can �nd which transformations

to apply based on a built-in proof strategy. This way, simple protocols can be proven

completely automatically. This is fundamentally di�erent from EasyCrypt [3] where the

user has to write all games manually and indicate why they are indistinguishable, and

then veri�es if the games are indeed indistinguishable using an SMT solver.

To prove concrete security properties, queries can be asked to CryptoVerif at each

stage in the sequence of games. CryptoVerif supports secrecy and correspondence queries.

26

4.2. Introduction to CryptoVerif

The former correspond directly to the secrecy properties introduced in Section 2.2.1,

and the latter permit to prove correspondences between events, which serves to prove

authentication-like properties.

For each transformation, CryptoVerif keeps track of the probability with which the

adversary can distinguish the two games, and computes the �nal probability based on

them. A successful proof and a �nal probability are reached when in a game, all queries

can be answered positively. This is then the �nal game. As all transformations have a

negligible probability in the security parameter of being detected, the same holds for

the �nal probability. This means that when CryptoVerif concludes with a proof, an

asymptotic proof for the queries has been found. The calculation of an exact probability

for certain parameters and instantiations of the cryptographic primitives is left to the

user. The probability formula given is precise enough to allow for this: It includes distinct

probability functions for each primitive to be broken and also depends on the execution

time.

Games in CryptoVerif are expressed in an applied pi calculus, and the tool comes with a

comprehensive library of cryptographic primitives. Since version 2.00, CryptoVerif and

ProVerif, a tool working in the symbolic model also by Bruno Blanchet, have become very

close in syntax. It is now possible to write models in the common language, and run them

in both tools. This makes the transition from one tool to the other much easier. The usual

approach is to analyse a protocol in the symbolic model to �nd logical protocol issues.

Tools working in the symbolic mode can �nd attack traces to understand these protocol

�aws. Once logical problems are �xed, a cryptographic proof can be attempted. When

using ProVerif 2.00 and CryptoVerif 2.00, this process becomes much more streamlined.

We did not attempt a symbolic analysis in ProVerif �rst, because WireGuard already has a

symbolic analysis done in Tamarin.

In the following, we describe CryptoVerif’s syntax and semantics, and �nally dive into

the modelling of certain cryptographic primitives and game transformations.

4.2.1. Syntax and Semantics

Games in CryptoVerif are represented in a process calculus with probabilistic semantics.

It is inspired by the pi-calculus and other calculi that were developed for the purpose of

cryptographic proofs [12]. Process calculi are �tted for the use case of protocols because

they permit to model their concurrent nature with parallel executions. Parallel execution

is modeled via parallel composition of possibly di�erent processes, for example P1 |P2, and

replication of one process, that is !
NP , which intuitively corresponds to an n times parallel

composition of P . Interaction with the attacker is modeled via input and output channels.

Messages are bitstrings in CryptoVerif’s calculus, and functions are from bitstrings to

bitstrings. Security assumptions that express the indistinguishability of two processes

Q,Q′ up to probability p are notated as Q ≈p Q
′
.

A CryptoVerif input �le consists of a list of declarations followed by a process:

〈declaration〉∗ process 〈iprocess〉

The process describes the considered security protocol possibly embedded into a security

game; the declarations contain type and function de�nitions and specify in particular

27

4. Proofs of Cryptographic Properties with CryptoVerif

hypotheses on the cryptographic primitives and the security queries to prove. We give an

overview of the syntax using Figure 4.1, and describe some language elements in more

detail in the following. Most of them will be described only as soon as they are used within

the code we describe later.

Types and the new keyword. The language is strongly typed, type conversions need to

be done explicitely. Arbitrary type conversion functions can be de�ned. Costum types

are simply de�ned with the type keyword and by giving them a name. Types correspond

to sets of bitstrings or a special symbol ⊥ (used for failed decryptions, for instance). Of

cryptographic interest are the options that can be de�ned between brackets: �xed, large,

and bounded are possible annotations. They determine from what probability distribution

new random values are created with the new keyword. New variables are either created with

the new keyword which corresponds to generation of random elements in CryptoVerif’s

semantics. Or they are created with the let keyword, which permits to assign the result

of another term (variable, function, . . .) to the variable.

Arrays. An extension of CryptoVerif’s calculus over other calculi of particular interest

is the automatic accessibility of variable values via arrays: All the values of a variable v
in all replications of a process can be accessed and searched via array indices v[i], where

i is the replication index of the process in which the variable v has the value v[i]. This

facilitates the formulation of games with lists that is common in cryptography, like when

a list needs to be populated with all previously used nonces, and it needs to be checked if

a new value collides with an old value.

Channel and Channel Names. The top-level process starts with an input process. This

means the adversary starts the game by calling it. This can be used to give parameters to

the game directly at the start. Input and output channels have names.

out(〈channel〉, 〈term〉)[; 〈iprocess〉]

in(〈channel〉, 〈pattern〉)[; 〈oprocess〉]

If input channels have the same name and the adversary calls an input channel of this

name, each of the channels has uniform probability of being chosen. For our model this is

not desirable, because we need deterministic communication. Note that input and output

processes always alternate, and only input processes can be run in parallel.

4.2.2. How CryptoVerif Checks if Queries are Satisfied

Secrecy Queries. In standard key exchange protocols, we would query the secrecy of

a key k with query secret k. CryptoVerif would then attempt to prove that the values

of k in various sessions are indistinguishable from independent random numbers. We

already discussed why key secrecy is not meaningful in the WireGuard protocol, because

the key is used in the protocol. In our model instead, the only secrecy query is the one

about a global bit b that is used in left-or-right message indistinguishability games. That

means, b is used in the game, and outputs of oracles depend on it. For such situations,

28

4.2. Introduction to CryptoVerif

M,N ::= terms

i replication index

x[M1, . . . ,Mm] variable access

f (M1, . . . ,Mm) function application

new x [̃i] : T ;N random number

let p = M in N else N ′ assignment (pattern-matching)

let x [̃i] : T = M in N assignment

if defined(M1, . . . ,Ml) ∧M then N else N ′ conditional

find[unique?] (
⊕m

j=1
uj1[̃i] = ij1 ≤ nj1, . . . ,ujmj [̃i] = ijmj ≤ njmj suchthat

defined(Mj1, . . . ,Mjlj) ∧M
′
j then Nj) else N ′ array lookup

insert Tbl(M1, . . . ,Ml);N insert in table

get Tbl(p1, . . . ,pl) suchthatM in N else N ′ get from table

event e(M1, . . . ,Ml);N event

eventabort e event e and abort

p ::= pattern

x [̃i] : T variable

f (p1, . . . ,pm) function application

=M comparison with a term

Q ::= input process

0 nil

Q | Q′ parallel composition

!
i≤nQ replication n times

newChannel c;Q channel restriction

c[M1, . . . ,Ml](p); P input

P ::= output process

c[M1, . . . ,Ml]〈N 〉;Q output

new x [̃i] : T ; P random number

let p = M in P else P ′ assignment

if defined(M1, . . . ,Ml) ∧M then P else P ′ conditional

find[unique?] (
⊕m

j=1
uj1[̃i] = ij1 ≤ nj1, . . . ,ujmj [̃i] = ijmj ≤ njmj suchthat

defined(Mj1, . . . ,Mjlj) ∧Mj then Pj) else P array lookup

insert Tbl(M1, . . . ,Ml); P insert in table

get Tbl(p1, . . . ,pl) suchthatM in P else P ′ get from table

event e(M1, . . . ,Ml); P event

eventabort e event e and abort

yield end

Figure 4.1.: Syntax of the process calculus [12]

29

4. Proofs of Cryptographic Properties with CryptoVerif

CryptoVerif’s approach is to eliminate the usage of b. In automatic mode, it would use

the built-in proof strategy to do so, but this is not possible in our model (because of key

compromises that are not handled automatically). In interactive mode, CryptoVerif would

point out the occurrence in the game, where an output depends on b. It is then up to the

user to make cryptographic transformations to make b disappear. Thus, to make it short:

Checking the secrecy query in our model means checking that no oracle output depends

on b.

Correspondence Queries. Queries of this type permit to prove correspondence properties

between events. We use three slightly di�erent variants in our model of WireGuard.

First, queries like “if an event A has been executed, then an event B has be executed

before”. These are non-injective correspondences. We use such a query to prove that the

�rst protocol message cannot be forged if no key was compromised. However it can be

replayed. Second, queries like “if an event A has been executed, then for each occurrence

of the event A, there is at least one occurrence of an event B”. These are called injective

correspondences and permit to prove authentication properties (and in comparison with

the previous example, that replay is not possible). Third, queries like “if an event A and an

event B have been executed, then some equation holds”. We use these to prove correctness

of the protocol and resistance against UKS: If two parties have the same view on a protocol

transcript, then they calculate the same key; if two parties calculate the same key, then

they have the same view on the protocol transcript (the protocol transcript of course

de�ned according to the de�nition of partnering).

These three are only motivational examples. In fact, a non-injective correspondence

is an implication between two logical formulaeψ ⇒ ϕ, and these formulae can contain

events. The grammar for logical formulae ϕ is the following [11]:

ϕ ::= formula

M term

event(e(M1, . . . ,Mm)) event

ϕ1 ∨ ϕ2 conjunction

ϕ1 ∧ ϕ2 disjunction .

The formula M holds if the term M evaluates to true, the formula event(e(M1, . . . ,Mm))

holds if the event has been executed, and conjunction and disjunction are de�ned as

usual. For injective correspondences, the grammar for logical formula is extended with

inj-event(e(M1, . . . ,Mm)). The left-hand formula ψ is then a conjunction of injective or

non-injective events.

The algorithm to check correspondences is much more involved than the one that

checks secrecy. We only present the rough idea and refer to Blanchet’s publication on

correspondence assertions in CryptoVerif for more details [11]. For all programme points

in a model, CryptoVerif collects true facts. That is, the value a variable is set to, the fact

that a variable is de�ned, and the fact that an event has been executed. For injective events,

CryptoVerif also collects information on the replication indices of the events. To prove a

non-injective correspondenceψ ⇒ ϕ, CryptoVerif collects all facts that hold at programme

30

4.3. A Security Model for WireGuard in CryptoVerif

points of events inψ and shows that these facts imply ϕ using an equational prover. For

injective correspondences, it is shown that if the replication indices of two executions

of injective events in ψ are di�erent, then the replication indices of the corresponding

executions of the considered injective event of ϕ are also di�erent [11].

Events for which all correspondence queries have been proved will be deleted from the

model with the next run of the simplify command. This is important because in some

cases, the arguments of events can are considered as “usage” of a variable (i.e. a key that is

used, but needed for a real-or-random indistinguishability game) and can thus prevent

the proof of a secrecy query. As a result, before attempting to prove a secrecy query, it is

advised to prove all correspondence queries.

4.3. A Security Model for WireGuard in CryptoVerif

We create a model for the WireGuard protocol in CryptoVerif and prove secrecy and

correspondence properties for it. We model the entire protocol, including the �rst two

protocol messages, the key con�rmation message from the initiator, and then a number of

transport data messages polynomial in the security parameter, in both directions between

initiator and responder.

For secrecy properties, we integrate left-or-right message indistinguishability games

into the protocol. We do so at each transport data message, including the key con�rmation

message. For correspondence properties, we include events at important places in the

protocol and issue queries on them.

4.3.1. Modelling the Cryptographic Primitives

CryptoVerif provides a macro system to instantiate de�nitions from the included crypto-

graphic library. This permits one to adapt type, variable, function, and probability names,

in case one de�nition (of a cryptographic primitive) needs to be used multiple times. A

macro for a cryptograpic primitive de�nes types, functions, equations, and equivalences.

The equations permit to model properties and relations of the primitive, like calculation

with group elements, or relations like correctness between encryption and decryption

functions. The equivalences de�ne how CryptoVerif can transform the game if this primi-

tive is used. In the following we describe what primitives we instantiate for our model

and elaborate on some of the functions and equivalences.

The AEAD Encryption Scheme. We de�ne types, constants, type conversion functions and

probabilities for use with the AEAD_nonce macro:

1 type key_t [large,fixed].

2 const dummy_key: key_t.

3 fun key_to_bitstring(key_t): bitstring [data].

4 type psk_t [large,fixed]. (* 32 byte pre-shared symmetric key *)

5 const psk_0: psk_t. (* pre-shared key with all zeros, *)

6 (* used in case the WireGuard user *)

7 (* did not provide a psk. *)

31

4. Proofs of Cryptographic Properties with CryptoVerif

8 type nonce_t [large,fixed]. (* 12 byte counter nonce for AEAD. *)

9 const nonce_0: nonce_t. (* const value for the zero nonce *)

10 const empty_bitstring : bitstring. (* const value for the empty

11 bitstring that will be encrypted *)

12 const dummy_bitstring: bitstring.

13 proba P_enc.

14 proba P_encctxt.

15 expand AEAD_nonce(

16 (* types *)

17 key_t, (* keys *)

18 bitstring, (* plaintext *)

19 bitstring, (* ciphertext *)

20 bitstring, (* additional data *)

21 nonce_t, (* nonces *)

22 (* functions *)

23 enc, (* encryption:

24 (* enc(plaintext, additional data, key, nonce): ciphertext *)

25 dec, (* decryption:

26 (* dec(ciphertext, additional data, key, nonce): bitstringbot *)

27 injbot, (* injection from plaintext to bitstringbot:

28 (* injbot(plaintext): bitstringbot *)

29 Zero, (* returns a plaintext of same length, consisting of zeros:

30 (* Zero(plaintext): plaintext *)

31 (* probabilities *)

32 P_enc, (* breaking IND-CPA *)

33 P_encctxt (* breaking INT-CTXT *)

34).

The macro de�nes the following parameters, functions, equation between functions, and

events:

1 def AEAD_nonce(key, cleartext, ciphertext, add_data, nonce, enc, dec, injbot,←↩

Z, Penc, Pencctxt) {

2

3 param N, N2, N3.

4

5 fun enc(cleartext, add_data, key, nonce): ciphertext.

6 fun dec(ciphertext, add_data, key, nonce): bitstringbot.

7

8 fun enc’(cleartext, add_data, key, nonce): ciphertext.

9

10 fun injbot(cleartext):bitstringbot [compos].

11 equation forall x:cleartext; injbot(x) <> bottom.

12

13 (* The function Z returns for each bitstring, a bitstring

14 of the same length, consisting only of zeroes. *)

15 fun Z(cleartext):cleartext.

16

32

4.3. A Security Model for WireGuard in CryptoVerif

17 equation forall m:cleartext, d: add_data, k:key, n: nonce;

18 dec(enc(m, d, k, n), d, k, n) = injbot(m).

19

20 (* Event raised when some nonce is used several times

21 with the same key, which breaks security. *)

22 event repeated_nonce.

The function enc’ which has the exact same signature as enc permits to detect which

occurrences of the encryption function have already been treated by the cryptographic

equivalences. In lines 10 and 11, the error symbol bottom is de�ned. It is returned by the

decryption function is case of failed authentication. The function injbot converts between

the space of bitstrings to the space of bitstrings including the error symbol. It can be used

in a pattern matching expression on a decryption result. If the pattern matching fails,

this means that the decryption’s result was bottom. The function Z models the leakage of

the length of the plaintext according to the de�nition of IND-CPA; Z(x) is a bitstring of

the same length as x, containing only zeros. The equation starting in line 17 de�nes the

correctness of the encryption scheme. The event repeated_nonce is added automatically

by CryptoVerif and will be successfully proved to not occur (in our case). We will shortly

comment the de�nitions of the IND-CPA and INT-CTXT security properties.

1 (* IND-CPA *)

2 equiv(ind_cpa(enc))

3 foreach i2 <= N2 do k <-R key;

4 foreach i <= N do Oenc(x:cleartext, d: add_data, n: nonce) :=

5 return(enc(x, d, k, n))

6 <=(N2 * Penc(time + (N2-1)*(N*time(enc, maxlength(x), maxlength(d), ←↩

maxlength(n)) + N*time(Z, maxlength(x))), N, maxlength(x)))=>

7 foreach i2 <= N2 do k <-R key;

8 foreach i <= N do Oenc(x:cleartext, d: add_data, n: nonce) :=

9 find u <= N suchthat defined(x[u],d[u],n[u],r[u])

10 && n = n[u] && (x <> x[u] || d <> d[u]) then

11 event_abort repeated_nonce

12 else

13 let r: ciphertext = enc’(Z(x), d, k, n) in

14 return(r).

Line 6 separates two processes, that are indistinguishable with the probability de�ned

between <=(and)=>. If the equivalence is applicable, the process above <=(...)=> can be

replaced by the process below <=(...)=>, and the probability will be used as the probability

that an adversary distinguishes the two games. CryptoVerif will instantiate the equivalence

with the according parameters and variables. The outer loop models encryption with

di�erent keys, the inner loop encryption under the same key. The parameters N2 und N

appear in the probability formula. The equivalence replaces an encryption by the find

condition starting in line 10: If another encryption under the same key, with the same nonce

is found, the failure event repeated_nonce is called and the game aborted. Otherwise, the

encryption is done, but the plaintext is not encrypted but the function Z of the plaintext.

This models the leakage of the length of the plaintext. More formally, the find condition

looks for a replication index u, for which the variables x, d, n, and r are de�ned, the current

33

4. Proofs of Cryptographic Properties with CryptoVerif

nonce is the same, but plaintext or ciphertext are di�erent. Note that the encryption

function is replaced by enc’ to prevent the equivalence from being applied multiple times.

The INT-CTXT assumption is modeled as follows:

1 (* INT-CTXT *)

2 equiv(int_ctxt(enc))

3 foreach i2 <= N2 do k <-R key; (

4 foreach i <= N do Oenc(x:cleartext, d: add_data, n: nonce) :=

5 return(enc(x, d, k, n)) |

6 foreach i3 <= N3 do Odec(y:ciphertext, c_d: add_data, c_n: nonce) :=

7 return(dec(y,c_d,k,c_n)))

8 <=(N2 * Pencctxt(time + (N2-1)*(N*time(enc, maxlength(x), maxlength(d), ←↩

maxlength(n)) + N3*time(dec,maxlength(y),maxlength(c_d),maxlength(c_n))←↩

), N, N3, maxlength(x), maxlength(y), maxlength(d), maxlength(c_d)))=> ←↩

[computational]

9 foreach i2 <= N2 do k <-R key [unchanged]; (

10 foreach i <= N do Oenc(x:cleartext, d: add_data, n: nonce) :=

11 find u <= N suchthat defined(x[u],d[u],n[u],r[u])

12 && n = n[u] && (x <> x[u] || d <> d[u]) then

13 event_abort repeated_nonce

14 else

15 let r: ciphertext = enc(x, d, k, n) in

16 return(r) |

17 foreach i3 <= N3 do Odec(y:ciphertext, c_d: add_data, c_n: nonce) :=

18 find j <= N suchthat defined(x[j],d[j],n[j],r[j]) &&

19 r[j] = y && d[j] = c_d && n[j] = c_n then

20 return(injbot(x[j]))

21 else

22 return(bottom)).

This time, two oracles are de�ned on both sides: An encryption and a decryption oracle.

The transformation of the encryption is not the interesting point, just the failure event in

case of nonce reuse is added. The transformation of the decryption is important here: It is

replaced by a find condition that looks for the replication index of an encryption oracle that

returned the ciphertext in question while called with the given nonce, key and additional

data. If such an encryption call is found, the plaintext used there is returned. Otherwise, the

error symbol bottom is returned. This models that the adversary cannot forge a ciphertext:

Decryption must fail if the ciphertext was not produced by the encryption function.

The key k is modeled as chosen randomly in line 3, and it is used in the encryption and

decryption function modeled below. If the key is used anywhere else in the game, the

equivalence does not match and cannot be applied. This is a problem in our model, because

we allow dynamic compromise of keys. We show later how this is modeled exactly, for

now it is enough to know that the key k appears in an out channel somewhere else in

the game, which the attacker may have called or not. Of course, in the case the key is
compromised, it is useless to apply any security assumption on the encryption scheme.

But in case the attacker did not call the corruption oracle, we want to be able to apply the

34

4.3. A Security Model for WireGuard in CryptoVerif

game transformations. Therefore, there is another de�nition of INT-CTXT that can be

applied in such a scenario:

1 equiv(int_ctxt_corrupt(enc))

2 foreach i2 <= N2 do k <-R key; (

3 foreach i <= N do Oenc(x:cleartext, d: add_data, n: nonce) :=

4 return(enc(x, d, k, n)) |

5 foreach i3 <= N3 do Odec(y:ciphertext, c_d: add_data, c_n: nonce) [←↩

useful_change] :=

6 return(dec(y,c_d,k,c_n)) |

7 Ocorrupt() [10] := return(k))

8 <=(N2 * Pencctxt(time + (N2-1)*(N*time(enc, maxlength(x), maxlength(d), ←↩

maxlength(n)) + N3*time(dec,maxlength(y),maxlength(c_d),maxlength(c_n))←↩

), N, N3, maxlength(x), maxlength(y), maxlength(d), maxlength(c_d)))=> ←↩

[manual,computational]

9 foreach i2 <= N2 do k <-R key [unchanged]; (

10 foreach i <= N do Oenc(x:cleartext, d: add_data, n: nonce) :=

11 find u <= N suchthat defined(x[u],d[u],n[u],r[u])

12 && n = n[u] && (x <> x[u] || d <> d[u]) then

13 event_abort repeated_nonce

14 else

15 let r: ciphertext = enc(x, d, k, n) in

16 return(r) |

17 foreach i3 <= N3 do Odec(y:ciphertext, c_d: add_data, c_n: nonce) :=

18 if defined(corrupt) then return(dec(y,c_d,k,c_n)) else

19 find j <= N suchthat defined(x[j],d[j],n[j],r[j]) &&

20 r[j] = y && d[j] = c_d && n[j] = c_n then

21 return(injbot(x[j]))

22 else

23 return(bottom) |

24 Ocorrupt() := let corrupt: bool = true in return(k)).

25 }

In this equivalence, besides encryption and decryption oracles, there is a third oracle that

simply publishes the key. This models that the attacker can have knowledge of the key in

some way. In the transformed game, we change the corruption oracle to de�ne a boolean

variable corrupt. The decryption oracle can then proceed as in the standard INT-CTXT, if

this boolean is not de�ned. If it is de�ned, this means the key has been compromised and

then the decryption is not transformed.

We de�ne several convenience wrapper functions around encryption and decryption to

make the code of the protocol messages easier to read:

1 letfun enc_G(group_element: G_t, current_hash: hashoutput_t, k: key_t, n: ←↩

nonce_t) =

2 enc(G_to_bitstring(group_element), hashoutput_to_bitstring(current_hash), k←↩

, n).

3

35

4. Proofs of Cryptographic Properties with CryptoVerif

4 letfun dec_ad_hash(ciphertext: bitstring, current_hash: hashoutput_t, k: ←↩

key_t, n: nonce_t) =

5 dec(ciphertext, hashoutput_to_bitstring(current_hash), k, n).

6

7 letfun enc_timestamp(timestamp: timestamp_t, current_hash: hashoutput_t, k: ←↩

key_t, n: nonce_t) =

8 enc(timestamp_to_bitstring(timestamp), hashoutput_to_bitstring(current_hash←↩

), k, n).

9

10 letfun enc_bitstring(plaintext: bitstring, current_hash: hashoutput_t, k: ←↩

key_t, n: nonce_t) =

11 enc(plaintext, hashoutput_to_bitstring(current_hash), k, n).

In WireGuard transport data messages, a counter value is transmitted, that is prepended

with zeros to build the nonce, as described in Section 3.2. We therefore de�ne an according

type, a type conversion function and a relationship between the zeros in both types.

1 type counter_t [fixed]. (* 8 byte counter in the data message *)

2 const counter_0: counter_t. (* constant for counter with value 0 *)

3 fun nonce_to_counter(nonce_t) : counter_t [data].

4 (* This is [data] because WireGuard enforces a new handshake before *)

5 (* the counter would overflow. So basically we have a bijection

6 (* between counter and nonce. *)

7

8 equation nonce_to_counter(nonce_0) = counter_0.

Gap Di�ie-Hellman. Following the Noise speci�cation, the Gap Di�e-Hellman assump-

tion must hold for the group used for the Di�e-Hellman operations. Thus we instantiate

Gap Di�e-Hellman from the library as follows:

1 type G_t [bounded,large]. (* type of group elements (must be "bounded"

2 and "large", of cardinal a prime q) *)

3 const dummy_g: G_t. (* return value in letfuns in case of errors *)

4 fun G_to_bitstring(G_t): bitstring [data].

5 type Z_t [bounded,large]. (* type of exponents (must be "bounded" and

6 "large", supposed to be {1, ..., q-1}) *)

7 const dummy_z: Z_t. (* return value in letfuns in case of errors *)

8 proba P_GDH. (* probability of breaking the GDH assumption *)

9 (* Page 7 in the Noise paper, rev 33:

10 The public_key either encodes some value in a large prime-order group

11 (which may have multiple equivalent encodings), or is an invalid

12 value. *)

13 expand GDH_prime_order_all_args(

14 (* types *)

15 G_t, (* Group elements *)

16 Z_t, (* Exponents *)

17 (* variables *)

18 g, (* a generator of the group *)

36

4.3. A Security Model for WireGuard in CryptoVerif

19 exp, (* exponentiation function *)

20 exp’, (* a symbol that replaces exp after game transformation *)

21 mult, (* multiplication function for exponents *)

22 (* probabilities *)

23 P_GDH (* probability of breaking the GDH assumption *)

24).

25 letfun DH(group_element: G_t, exponent: Z_t) =

26 exp(group_element, exponent).

We de�ne types for group elements and exponents. For both types, we de�ne constants

that serve as dummy return type. The probability P_GDH will appear in the �nal probability

formula as the probability that the Gap Di�e-Hellman assumption is broken by any

adversary. The macro in CryptoVerif’s library de�nes for example the following functions,

constants, and equations for Gap Di�e-Hellman (this is just an excerpt):

1 fun exp(G,Z): G.

2 fun exp’(G,Z): G.

3 const g:G.

4 fun mult(Z,Z): Z.

5 equation builtin commut(mult).

6 equation forall a:G, x:Z, y:Z;

7 exp(exp(a,x), y) = exp(a, mult(x,y)).

8 equation forall a:G, x:Z, y:Z;

9 exp’(exp’(a,x), y) = exp’(a, mult(x,y)).

This de�nes what calculations can be made in the group. The macro will replace Z by Z_t

and G by G_t. The equivalences de�ned for Gap Di�e-Hellman, which we do not reproduce

here, serve CryptoVerif to match DDH oracles and possible corruptions of private keys,

and to transform the game accordingly.

Message Authentication Code. WireGuard does not de�ne which security property is

required for the MAC. We chose to model it as a SUF-CMA secure, deterministic MAC.

However, our proof does not rely on the security of the MAC, that is, does not use any

security assumption on the MAC. Thus we only use the de�nition of the two functions

mac and verify from the macro and the correctness equations:

1 fun mac(bitstring, hashoutput_t): mac_t.

2 fun check(bitstring, hashoutput_t, mac_t): bool.

3

4 equation forall m: bitstring, k: hashoutput_t;

5 check(m, k, mac(m, k)).

6

7 equation forall m: bitstring, k: hashoutput_t, m’: mac_t;

8 (mac(m,k) = m’) = check(m, k, m’).

The �rst MAC in WireGuard is calculated over all bytes of the message prior to mac1.

Therefore we de�ne functions that map all prior protocol �elds to a bitstring, one for the

�rst protocol message and one for the second protocol message:

1 fun concat_msg_alpha_1(msg_type_t, reserved_t,

37

4. Proofs of Cryptographic Properties with CryptoVerif

2 session_index_t, G_t,

3 (* and the two ciphertexts *)

4 bitstring, bitstring): bitstring [data].

5 fun concat_msg_alpha_2(msg_type_t, reserved_t,

6 session_index_t, session_index_t,

7 G_t, bitstring): bitstring [data].

Key Derivation Function. WireGuard uses HKDF in a chain of calls to derive symmetric

keys at di�erent stages of the protocol:

Ci = const

Ci = HKDF1(Ci ,v0)

Ci ‖κ1 = HKDF2(Ci ,v1)

Ci ‖κ2 = HKDF2(Ci ,v2)

Ci = HKDF1(Ci ,v3)

Ci = HKDF1(Ci ,v4)

Ci = HKDF1(Ci ,v5)

Ci ‖τ ‖κ3 = HKDF3(Ci ,v6)

T send

i ‖T recv

i = HKDF2(Ci ,v7)

We want to model HKDF as a random oracle, as there are existing indi�erentiability results

we can built upon to justify this. However, using 8 calls to a random oracle, chained by

the chaining key Ci , will vastly increase the size of the games CryptoVerif produces. To

understand this, consider the de�nition of a random oracle hash in CryptoVerif’s library:

1 def ROM_hash(key, hashinput, hashoutput, hash, hashoracle, qH) {

2

3 param Nh, N, Neq.

4

5 fun hash(key, hashinput):hashoutput.

6

7 equiv(rom(hash))

8 foreach ih <= Nh do k <-R key;

9 (foreach i <= N do OH(x:hashinput) := return(hash(k,x)) |

10 foreach ieq <= Neq do Oeq(x’:hashinput, r’:hashoutput) := return(r’ ←↩

= hash(k,x’)))

11 <=(#Oeq / |hashoutput|)=> [computational]

12 foreach ih <= Nh do

13 (foreach i <= N do OH(x:hashinput) :=

14 find[unique] u <= N suchthat defined(x[u],r[u]) && x= x[u] then return←↩

(r[u]) else r <-R hashoutput; return(r) |

15 foreach ieq <= Neq do Oeq(x’:hashinput, r’:hashoutput) :=

16 find[unique] u <= N suchthat defined(x[u],r[u]) && x’ = x[u] then ←↩

return(r’ = r[u]) else

17 return(false)).

38

4.3. A Security Model for WireGuard in CryptoVerif

On top, we have two oracles, one that calculates a hash, and one that compares a variable

r’ to a hash result hash(k, x’). On the bottom, both oracles are replaced by a find

construction. The �rst in line 14 returns a previous result if the oracle was called with the

same arguments, and otherwise returns a fresh random value drawn from the result type.

The second one in line 16 compares the variable r’ to the previous hash result, if the hash

function was called with the arguments k, x’ before. If the hash function was not called

with the arguments before, it returns false. This models that an attacker cannot know

the result of a random oracle hash function if the random oracle was not called for these

arguments before. This game transformation models exactly the de�nition of a random

oracle that we gave in Section 2.1. The probability to distinguish the two games is the

number of calls the attacker makes to the hash oracle divided by the output space. This

is the case because in the above game, the comparison could return true if the attacker

found a collision, while collisions are excluded in the bottom game.

If a random oracle is called in a game, then the transformation will replace all random

oracle function calls by a find construction comparing the arguments with the arguments

of all other calls of the same random oracle, leading to 8 branches in the game at each

call of a random oracle call. The calls will thus become nested, and the number of find

conditions could increase to 8
8
, which exceeds by far the capabilities of CryptoVerif on

current computers. Thus, we need to simplify the protocol. We observe, that keys are

only extracted in 4 of the HKDF calls. Additionally, the last HKDF call does not take any

new input, meaning that the transport data keys depend only on the same inputs as the

intermediate symmetric key before. Thus, we replace the chain of HKDF calls by three

calls to independent random oracles. We keep track of the dependency of the extracted

keys of all inputs by giving all those inputs as arguments to the random oracles:

κ1 = Chain′
1
(v0,v1)

κ2 = Chain′
2
(v0,v1,v2)

τ ‖κ3‖T
send

i ‖T recv

i = Chain′
6
(v0,v1,v2,v3,v4,v5,v6)

We give justi�cation of this approach with an indi�erentiability proof. Readers who want

to skip this proof can continue reading on page 55.

4.3.1.1. Indi�erentiability Proof for the Key Derivation Chain

Indi�erentiability is a more general notion of indistinguishability. In the way we use

indi�erentiability for the following proofs, it has been de�ned in [20]. Like [39], we

instantiate it for random oracles as the ideal primitive. However, because we need to show

indi�erentiability for more than one function, we extend the de�nition.

De�nition 31 (Indi�erentiability). Functions Fi,1≤i≤n with oracle access to a random

oracle H are (tD, tS , (qH ,qFi ,1≤i≤n), ϵ)-indi�erentiable from independent random oracles

H ′i,1≤i≤n, if there exists a simulator S such that for any distinguisher D

| Pr[DFi,1≤i≤n ,H = 1] − Pr[DH ′i,1≤i≤n ,S = 1]| ≤ ϵ .

The simulator S has oracle access to H ′i,1≤i≤n, and runs in time tS . The distinguisher D runs

in time tD and makes at most qH queries to H and at most qi queries to Fi,1≤i≤n.

39

4. Proofs of Cryptographic Properties with CryptoVerif

In the gameG0 = DFi,1≤i≤n ,H
, the distinguisher interacts with the real functions Fi and the

random oracle H from which Fi are de�ned. In the game G1 = DH ′i,1≤i≤n ,S , the distinguisher

interacts with a random oracle H ′i instead of Fi , and with a simulator S , which simulates

the behavior of the random oracle H using calls to H ′i . Indi�erentiability means that these

two games are indistinguishable.

Intuitively, the indi�erentiability proofs we do in the following work as follows: For all

traces in G0 we need to �nd the corresponding trace in G1 and show that they produce the

same result. Interesting traces are those where the distinguisher already knows the result

from another related call.

This is done by proving the following steps:

• HKDFn is indi�erentiable from a random oracle. A proof for n = 2 has been done

in [39], and we generalise it here.

• In a chain of calls to HKDFn, every call is indi�erentiable from a call to an indepen-

dent random oracle that, additionally to the arguments of the corresponding call to

HKDFn, receives all prior arguments to HKDFn. This also holds for the last call of

HKDFn in the chain.

• The last two calls to HKDFn respectively Chain are indi�erentiable from one call to

a random oracle that has a longer output.

Before diving into the proofs themselves, we describe how the lemmas will be instan-

tiated for use in WireGuard. For this, we introduce a notation for the concatenation of

bitstrings used in the whole section. The ‖ operator is used to concatenate blocks of 256 bit

and multiples of it. We use the placeholder _ for one 256 bit block and . . . for multiple

256 bit blocks. In x ‖y = z and x ‖_ = z and x ‖. . . = z, x consists of the �rst 256 bit block

of z. In x ‖y = z and _‖y = z and . . . ‖y = z, y consists of the last 256 bit block of z. In

x1‖. . . ‖xi ‖. . . ‖xn = z, x1 consists of the �rst, xi of i-th and xn of the n-th 256 bit block of z.

In the original protocol, the chain of HKDF calls is the following. The constant value

that initialises Ci is calculated by hashing the Noise protocol name.

Ci = const

Ci = HKDF1(Ci ,v0)

Ci ‖κ1 = HKDF2(Ci ,v1)

Ci ‖κ2 = HKDF2(Ci ,v2)

Ci = HKDF1(Ci ,v3)

Ci = HKDF1(Ci ,v4)

Ci = HKDF1(Ci ,v5)

Ci ‖τ ‖κ3 = HKDF3(Ci ,v6)

T send

i ‖T recv

i = HKDF2(Ci ,v7)

40

4.3. A Security Model for WireGuard in CryptoVerif

We prove Lemma 2 for a chain of calls to the same HKDFn function, thus we rewrite the

chain to use only calls to HKDF3, as 3 is the maximum number of outputs needed.

Ci = const

Ci ‖_‖_ = HKDF3(Ci ,v0)

Ci ‖κ1‖_ = HKDF3(Ci ,v1)

Ci ‖κ2‖_ = HKDF3(Ci ,v2)

Ci ‖_‖_ = HKDF3(Ci ,v3)

Ci ‖_‖_ = HKDF3(Ci ,v4)

Ci ‖_‖_ = HKDF3(Ci ,v5)

Ci ‖τ ‖κ3 = HKDF3(Ci ,v6)

T send

i ‖T recv

i ‖_ = HKDF3(Ci ,v7)

Because of the way HKDF is constructed, this is actually the same computation. We just

throw away parts of HKDF’s result at places denoted with an underscore.

At this stage we can apply Lemma 2 which adds a negligible probability for an attacker to

distinguish the two games. Note how every Chain call depends on all previous arguments.

‖ = Chain0(v0)

κ1‖_ = Chain1(v0,v1)

κ2‖_ = Chain2(v0,v1,v2)

‖ = Chain3(v0,v1,v2,v3)

‖ = Chain4(v0,v1,v2,v3,v4)

‖ = Chain5(v0,v1,v2,v3,v4,v5)

τ ‖κ3 = Chain6(v0,v1,v2,v3,v4,v5,v6)

T send

i ‖T recv

i ‖_ = Chain7(v0,v1,v2,v3,v4,v5,v6,v7)

The last Chain call has a third output block that is not used – this will become clear when

we formally de�ne the HKDF chain later.

We now have established that all these random oracles are independent. It is therefore

su�cient to use the following four lines to calculate the relevant parts of the HKDF chain:

κ1‖_ = Chain1(v0,v1)

κ2‖_ = Chain2(v0,v1,v2)

τ ‖κ3 = Chain6(v0,v1,v2,v3,v4,v5,v6)

T send

i ‖T recv

i ‖_ = Chain7(v0,v1,v2,v3,v4,v5,v6,v7)

The output of the random oracles can be truncated by Lemma 3 to avoid having to throw

away parts of the output:

κ1 = Chain′
1
(v0,v1)

κ2 = Chain′
2
(v0,v1,v2)

τ ‖κ3 = Chain6(v0,v1,v2,v3,v4,v5,v6)

T send

i ‖T recv

i = Chain′
7
(v0,v1,v2,v3,v4,v5,v6,v7)

41

4. Proofs of Cryptographic Properties with CryptoVerif

In WireGuard, v7 = ϵ . This means that T send

i and T recv

i only depend on v0, . . . ,v6, as do τ
and κ3 on the previous line. By Lemma 4 we can replace the last two lines by only one call

to a random oracle with a longer output:

κ1 = Chain′
1
(v0,v1)

κ2 = Chain′
2
(v0,v1,v2)

τ ‖κ3‖T
send

i ‖T recv

i = Chain′
6
(v0,v1,v2,v3,v4,v5,v6)

HKDFn is indi�erentiable froma randomoracle WireGuard employs BLAKE2s [1] as hash

function in HMAC and thus also in HKDF. BLAKE2 has a keyed mode of operation, which

could be used directly instead of using the standard hash operation mode inside of the

HMAC construction. As WireGuard is built upon the Noise Protocol Framework, it sticks

to the approach chosen there, and this is to use HMAC for all hash functions, even for

those which provide a more specialised function. The reasons are explained in great detail

in [49] – mainly it is to have a common interface, and to be able to keep results from

cryptographic analyses applicable that are based on the HMAC and HKDF construction.

BLAKE2’s authors claim in their publication that an indi�erentiability result [17] for

BLAKE2’s ancestor BLAKE can be inherited by BLAKE2. This is not the case, as stated by

the authors of [46], who give a proof of indi�erentiability from a random oracle of the

entire BLAKE2 construction. With Theorem 4.3 from [26, 25, this theorem is only in the full

version], we have indi�erentiability of HMAC-BLAKE2s from a random oracle. Note that

we cannot apply Theorem 4.4 from this paper because BLAKE2 is not a Merkle-Damgård

construction.

The HKDF key derivation function is de�ned as follows in [40]:

HKDFn(salt, key, info) = k1‖. . . ‖kn where

prk = HMAC(salt, key)
k1 = HMAC(prk, info‖0x00)

ki+1 = HMAC(prk,ki ‖info‖i), with 1 ≤ i < n

(4.1)

The variable i is a 1 byte value, and thus HKDFn can return up to 256 blocks. This function

is not indi�erentiable from a random oracle in general. Intuitively, the problem comes

from a confusion between the �rst and the second (or third) call to HMAC, which makes

it possible to generate prk by calling HKDFn rather than HMAC. In more detail, let

prk‖. . . = HKDFn(s,k, info)
salt = HMAC(s,k)

x = HMAC(prk, info′‖0x00)

x′‖. . . = HKDFn(salt, info‖0x00, info′) .

When HKDFn is de�ned from HMAC as above, we have

prk′ = HMAC(s,k)

prk = k′
1
= HMAC(prk′, info‖0x00)

42

4.3. A Security Model for WireGuard in CryptoVerif

but with

prk′ = salt ,

we have

prk = HMAC(salt, info‖0x00) (4.2)

The second call to HKDFn will calculate

prk′′ = HMAC(salt, info‖0x00) = prk
k′′

1
= HMAC(prk′′, info′‖0x00)

and thus,

x′ = HMAC(prk, info′‖0x00) = x .

However, when HKDFn is a random oracle and HMAC is de�ned from HKDFn, the simu-

lator that computes HMAC sees two calls to HMAC that seem to be unrelated. It is unable

to see that prk is in fact related to the previous call salt = HMAC(s,k) by equation (4.2),

because it doesn’t know which value of info it should use. Therefore, the simulator can

only return fresh random values for salt and x , and x , x′ in general.

We can however recover the indi�erentiability of HKDFn under the additional assump-

tion that the n + 1 calls to HMAC use disjoint domains, and we will later justify that this

assumption holds in our case. Let S, K , and I be the sets of possible values of salt, key,

and info respectively, andM the set of 256 bit bitstrings, output of HMAC.

Lemma 1. Let n ≥ 2 be a �xed integer. IfK ∩ (I‖0x00∪ (
⋃n−1

i=1
M‖I‖i)) = ∅ and S con-

sists of 256 bit bitstrings, then HKDFn with domainS×K×I is (tD, tS ,q, ϵ)-indi�erentiable

from a random oracle, where ϵ = O(nq2/|M|) and tS = O(q
2), and O just hides small

constants.

Proof. Consider

• the game G0 in which HMAC is a random oracle and HKDFn is de�ned from HMAC
by (4.1), and

• the game G1 in which HKDFn is a random oracle and HMAC is de�ned as follows.

Let L be a list of pairs ((k,m), r) such that r is the result of a previous call to HMAC(k,m).
The list L is initially empty.

HMAC(k,m) =

1. if ((k,m), r) ∈ L for some r , then return r , else

2. if ((k0,m0),k) ∈ L for some k0 ∈ S andm0 ∈ K , andm = info‖0x00 for some info ∈ I,

then let r ‖. . . = HKDFn(k0,m0, info), else

3. if ((k0,m0),k) ∈ L for some k0 ∈ S andm0 ∈ K , and m = ki ‖info‖i for some ki ∈ M,

info ∈ I and 1 ≤ i < n, then let k′
1
‖. . . ‖k′i ‖. . . ‖k

′
n = HKDFn(k0,m0, info); if k′i = ki ,

then r = k′i+1
;

43

4. Proofs of Cryptographic Properties with CryptoVerif

4. otherwise, let r be a fresh random element ofM;

5. add ((k,m), r) to L;

6. return r .

We name direct oracle calls to HKDFn or HMAC calls that are done directly by the distin-

guisher, and indirect oracle calls the calls to HMAC done from inside HKDFn (in G0) and

the calls to HKDFn done from inside HMAC (in G1).

Let us show that these two games are indistinguishable as long as, in G0,

H1. HMAC never returns the same result for di�erent arguments,

H2. no fresh result of HMAC is equal to the �rst argument of a previous call to HMAC,

H3. the distinguisher never calls HMAC(k,m) where k = HMAC(salt, key) has been called

from inside HKDFn but not directly by the distinguisher,

H4. • HMAC(prk, info‖0x00) never returns a freshk1 such thatHMAC(prk,k1‖info‖0x01)

has been called (directly or indirectly) before, and

• for all 1 ≤ i < n, HMAC(prk,ki ‖info‖i) never returns a fresh ki+1 such that

HMAC(prk,ki+1‖info‖i + 1) has been called (directly or indirectly) before,

and in G1,

H5. there are no two elements ((k,m), r) and ((k′,m′), r) in L with (k,m) , (k′,m′),

H6. if the distinguisher calls HMAC(prk,ki ‖info‖i) with 1 ≤ i < n, ((salt, key), prk) ∈ L,

and _‖. . . ‖ki ‖. . . ‖_ = HKDFn(salt, key, info), then

• HKDFn(salt, key, info) has been called directly before the call to

HMAC(prk,ki ‖info‖i), or

• if i = 1 then HMAC(prk, info‖0x00), or if i > 1 then HMAC(prk,ki−1‖info‖i − 1)

has been called before directly and returned ki , and thus HKDFn(salt, key, info)
has been called indirectly before the call to HMAC(prk,ki ‖info‖i).

We have the following invariant:

P1. Given salt, key, there is at most one prk such that ((salt, key), prk) ∈ L.

Indeed, when L contains such an element, calls to HMAC(salt, key) immediately return

prk at step 1, and never add another element ((salt, key), prk′) to L.

Case 1. Suppose the distinguisher makes a direct oracle call to HKDFn or HMAC with

the same arguments as a previous direct call to the same oracle. Both G0 and G1 return

the same result as in the previous call.

Case 2. Suppose the distinguisher makes a direct call to HMAC(k,m) that has not been

done before as a direct call.

44

4.3. A Security Model for WireGuard in CryptoVerif

Case 2. a) In G0, this HMAC call has already been done as HMAC(salt, key) from inside

HKDFn. In G0, the result is prk = HMAC(salt, key), which is independent from previously

returned values, so it looks like a fresh random value to the distinguisher. InG1, we cannot

have m = info‖0x00 nor m = ki ‖info‖i for some 1 ≤ i ≤ n because m = key ∈ K which is

disjoint from I‖0x00 and fromM‖I‖i , so HMAC returns a fresh random value.

Case 2. b) In G0, this HMAC call has already been done as HMAC(prk, info‖0x00) from

inside HKDFn(salt, key, info). Hence HMAC(k,m) = HMAC(prk, info‖0x00) is the �rst

256 bit block of HKDFn(salt, key, info) and prk = HMAC(salt, key). Since by H3, the distin-

guisher never calls HMAC(k,m) where k = HMAC(salt, key) has been called from inside

HKDFn but not directly by the distinguisher, HMAC(salt, key) has been called directly by

the distinguisher. In G1, since HMAC(salt, key) has been called, ((salt, key), prk) ∈ L, so

HMAC(k,m) = HMAC(prk, info‖0x00) returns the �rst 256 bit block of HKDFn(salt, key,

info) (step 2), as in G0.

Case 2. c) In G0, this HMAC call has already been done as HMAC(prk,ki ‖info‖i), with

1 ≤ i < n from insideHKDFn(salt, key, info). HenceHMAC(k,m) = HMAC(prk,ki ‖info‖i)
is the (i + 1)-th 256 bit block of HKDFn(salt, key, info), prk = HMAC(salt, key), and

ki = HMAC(prk,ki−1‖info‖i−1) is the i-th 256 bit block ofHKDFn(salt, key, info). As above,

HMAC(salt, key) has been called directly by the distinguisher. InG1, sinceHMAC(salt, key)
has been called, ((salt, key), prk) ∈ L, so, sinceki is the i-th 256 bit block ofHKDFn(salt, key,

info), HMAC(k,m) = HMAC(prk,ki ‖info‖i) returns the (i + 1)-th 256 bit block of

HKDFn(salt, key, info) (step 3), as in G0.

Case 2. d) In G0, this HMAC call has never been done, directly or indirectly. Hence,

HMAC returns a fresh random value. In G1, if ((salt, key),k) ∈ L, then HMAC may return

one of the 256 bit blocks of HKDFn(salt, key, info). However, since HMAC(k,m) has not

been called from HKDFn in G0, HKDFn(salt, key, info) has not been called directly by

the distinguisher, so the result of HMAC always looks like a fresh random value to the

distinguisher.

Case 3. Suppose the distinguisher makes a direct call to HKDFn(salt, key, info) that has

not been done before as a direct call.

Case3. a) InG1, this call to HKDFn has already been done from HMAC. This means the al-

gorithm entered case 2 or 3. Hence ((salt, key), prk) ∈ L and either HMAC(prk, info‖0x00)

or HMAC(prk,ki ‖info‖i) for an i with 1 ≤ i < n has been called. Since ((salt, key), prk) ∈
L, HMAC(salt, key) has been called before the call to HMAC(prk, info‖0x00) or

HMAC(prk,ki ‖info‖i), and it has returned prk.

Case 3. a) i) Suppose that HMAC(prk, info‖0x00) has been called and it returned k′
1
. Fur-

thermore, suppose that HMAC(prk,k′n′‖info‖n
′), 1 ≤ n′ < n has been called and returned

k′n′+1
, where n′ = max{i |HMAC(prk,ki ‖infoß)}. This means HMAC(prk,k′j ‖info‖j) with

45

4. Proofs of Cryptographic Properties with CryptoVerif

n′ < j < n have not been called. Then by H6, all HMAC(prk,k′i ‖info‖i), 1 ≤ i ≤ n′ have

been called, and returned k′i+1
.

To begin with, we treat the �rst n′ 256 bit blocks of HKDFn’s output, because these are

already determined by previous calls. By step 2 of the de�nition of HMAC in G1, since

by H5, the only element of L of the form (_, prk) is ((salt, key), prk), HMAC(prk, info‖0x00)

is the �rst 256 bit block of a previous call to HKDFn(salt, key, info). In the same way, by

step 3 of the de�nition of HMAC inG1, HMAC(prk,k′i ‖info‖i) is the (i + 1)-th 256 bit block

of the same call to HKDFn(salt, key, info). The current call to HKDFn returns the same

results for its �rst n′ 256 bit blocks and thus HKDFn(salt, key, info) = k′
1
‖. . . ‖k′n′‖. . . ‖k

′
n,

where k′
1
= HMAC(prk, info‖0x00) and k′i+1

= HMAC(prk,k′i ‖info‖i). In G0 we have the

same property by de�nition of HKDFn.

Now we treat the last n − n′ 256 bit blocks. In G1 they are independent from re-

turned random values. Indeed, if a call to HMAC returns the (n′ + 1)-th 256 bit block

of HKDFn(salt, key, info), then this call occurs in step 3 of HMAC, and it is HMAC(prk′,m)
with ((salt, key), prk′) ∈ L,m = k′′n′‖info‖n

′
, and k′′n′ is the n′-th 256 bit block of

HKDFn(salt,key, info). By P1, prk′ = prk. We have k′n′ = k′′n′, so HMAC(prk′,m) is

HMAC(prk,k′n′‖info‖n
′). But HMAC(prk,k′n′‖info‖n

′) has not been called by the hypoth-

esis of this case, so no previous call to HMAC returns the (n′ + 1)-th 256 bit block of

HKDFn(salt, key, info). Thus the (n′ + 1)-th 256 bit block of HKDFn(salt, key, info) look

like a fresh random value. For calls to HMAC that would return the (n′ + t)-th 256 bit

block, t > 1, of HKDFn, we start with the same reasoning. However, they fail at the point

where k′n′+t = k
′′
n′+t would be necessary to continue: This is excluded by H6.

In G0, the last n − n′ 256 bit blocks of HKDFn(salt, key, info) are independent of pre-

viously returned values. Indeed, HMAC(prk,k′j ‖info‖j),n
′ ≤ j < n has not been called

directly. Furthermore, they have not been called indirectly from previous calls to HKDFn,

because, ifHMAC(prk,k′j ‖info‖j) had been called from someHKDFn(salt′, key′, info′), then

by K ∩ (I‖0x00 ∪ (
⋃n−1

i=1
M‖I‖i)) = ∅, this call would be the (j + 1)-th call to HMAC in

HKDFn(salt′, key′, info′), prk = HMAC(salt′, key′), and info′ = info. Since by H1, HMAC
never returns the same result for di�erent arguments, this would imply salt′ = salt and

key′ = key, contradicting that HKDFn(salt, key, info) has not been called before. Therefore,

the last n − n′ 256 bit blocks of HKDFn(salt, key, info) look like a fresh random value.

Case 3. a) ii) Otherwise, HMAC(prk, info‖0x00) has not been called.

If HKDFn(salt, key, info) had been called indirectly from step 2 of HMAC, then we would

have called HMAC(prk′,m) with ((salt, key), prk′) ∈ L and m = info‖0x00. Furthermore,

by P1, prk′ = prk, so we would have called HMAC(prk, info‖0x00). Contradiction. So

HKDFn(salt, key, info) has not been called from step 2 of HMAC.

Therefore, HKDFn(salt, key, info) has been called from step 3 of HMAC. If HKDFn(salt,
key, info) had been called at step 3 of HMAC and the next 256 bit block was returned, then

the distinguisher would have calledHMAC(prk′,k′i ‖info‖i, 1 ≤ i < n)with ((salt, key), prk′)
∈ L and . . . ‖k′i ‖. . . = HKDFn(salt, key, info). By H6, HKDFn(salt, key, info) would have

been called before, either directly (excluded by hypothesis) or indirectly. We continue this

argument recursively using H6 until the conclusion that ultimately, HKDFn(salt, key, info)
would have been called indirectly at step 2. Then the distinguisher would have called

46

4.3. A Security Model for WireGuard in CryptoVerif

HMAC(prk′′, info‖0x00) with ((salt, key), prk′) ∈ L, so by P1, prk′′ = prk, so this is ex-

cluded by hypothesis. Therefore, no 256 bit blocks of HKDFn(salt, key, info) were returned

at step 3. So far, this paragraph can be summarised as: Because HMAC(prk, info‖0x00) has

not been called by hypothesis, the �rst 256 bit block of HKDFn was not returned. Because

of the above argument, neither were the other bits of HKDFn returned. We can conclude

that in G1, the value of HKDFn(salt, key, info) is independent from previously returned

values, so it looks like a fresh random value.

InG0,HMAC(salt, key) has been called directly and returned prk,HMAC(prk, info‖0x00)

has not been called directly. If a previous call to HKDFn(salt′, key′, info′) called HMAC(prk,

info‖0x00), then we would have info′ = info and prk = HMAC(salt′, key′). By H1, this

would imply salt′ = salt and key′ = key, so HKDFn(salt, key, info) would have been

called before, which is excluded by hypothesis. Therefore, HMAC(prk, info‖0x00) has

not been called before, neither directly nor indirectly. By H4, HMAC(prk,k1‖info‖1)
has not been called before, with k1 = HMAC(prk, info‖0x00), which is a call invoked by

the new call to HKDFn(salt, key, info). Also by H4 the same reasoning concludes that

HMAC(prk,ki ‖info‖i), 1 ≤ i < n have not been called. Therefore, HMAC(prk, info‖0x00)

and HMAC(prk,ki ‖info‖i), 1 ≤ i < n have not been called before, so their result is inde-

pendent from previously returned values. Hence HKDFn(salt, key, info) is independent

from previously returned values, as in G1.

Case 3. b) In G1, this HKDFn call has never been done, directly or indirectly. Hence

HKDFn returns a fresh random value. In G0, the result is obtained from calls to HMAC.

The distinguisher has not made these calls to HMAC directly calling HMAC(salt, key) �rst,

because otherwise the simulator for HMAC inG1 would have called HKDFn(salt, key, info)
in step 2 or 3. Furthermore, it cannot call HMAC(salt, key) with result prk after calling

HMAC(prk, info‖0x00) or HMAC(prk,ki ‖info‖i), 1 ≤ i < n, by H2. So the result of HKDFn
is independent of the result of direct HMAC calls made by the distinguisher. Moreover,

other calls to HKDFn did not generate the same last n calls to HMAC, because by H1, the

�rst call to HMAC, HMAC(salt, key), never returns the same result for di�erent arguments.

So the result looks like a fresh random value to the distinguisher.

The previous proof shows that the games G0 and G1 are indistinguishable assuming the

hypotheses H1–H6 hold. Let us bound the probability that they do not hold. Suppose that

there are at most q (direct or indirect) queries to HMAC.

• The probability that H1 does not hold is at most the probability that among q random

values inM, two of them collide, so it is at most q2/|M|.

• The probability that H2 does not hold is at most the probability that among q random

values inM, one of them is equal to one among the q �rst arguments of HMAC
queries, so it is also at most q2/|M|.

• When H3 does not hold, the distinguisher calls HMAC(k,m) for a value k that

happens to be equal to HMAC(salt, key), which is independent of the values the

distinguisher has seen, since HMAC(salt, key) has not been called directly by the

47

4. Proofs of Cryptographic Properties with CryptoVerif

distinguisher. There are at most q values HMAC(salt, key), and the distinguisher

has q attempts, so the probability that H3 does not hold is at most q2/|M|.

• H4 means that HMAC(prk, ·) never returns a fresh result k that was already used

before in a direct call to HMAC(prk,k ‖info‖·) which is the directly subsequent call

to HMAC(prk, ·) in HKDFn.

Thus, when H4 does not hold, the fresh random value from HMAC collides with a

previously �xed k . There are at most q values HMAC(prk, ·) and at most q values k ,

so the probability that H4 does not hold is at most q2/|M|.

• Let us show that, if the random values r chosen at step 4 are all distinct and distinct

from all 256 bit blocks of HKDFn results used in HMAC, then H5 holds. The proof

is by induction on the sequence of calls of HMAC. If ((k,m), r) is added to L and r
comes from a result of HKDFn at step 2 or 3, then k determines k0,m0 uniquely by

induction hypothesis, and m determines info as well as which 256 bit block of the

result of HKDFn is r , hence r is uniquely determined from k,m, and distinct from

elements chosen at step 4 by hypothesis. If ((k,m), r) is added to L and r is chosen

at step 4, then r is always distinct from elements already in L by hypothesis. This

concludes the proof of our claim.

From this claim, we can easily see that the probability that H5 does not hold is at

most q2/|M|.

• When H6 does not hold, the distinguisher callsHMAC(prk,ki ‖info‖i) andki happens

to be equal to the i-th 256 bit block of HKDFn(salt, key, info) which is independent

from values returned to the distinguisher. There are at most q calls to HMAC, and

at most q values ki they could collide with, thus the probability that H6 does not

hold is at most q2/|M|.

Hence, the probability that the distinguisher distinguishes G0 from G1 is at most 6q2/|M|.

This is the same probability that was found for n = 2 in [39], thus we do not loose

probability by generalising the proof to HKDFn.

We now want to justify that the hypothesis of Lemma 1 is satis�ed in our case. First of

all, info is empty in WireGuard. Then, K consists of bitstrings of length 256 bit = 32 byte,

I‖0x00 consists of bitstrings of length 1 byte, andM‖I‖i consists of bitstrings of length

33 byte.

Indi�erentiabilityof anHKDFn chain For the next step of the proof we assume thatHKDFn
is a random oracle that outputs bitstrings of length l . Because of this, we will just denote

it by H, leaving out the n, because it does not matter anymore how many calls to HMAC
are used to build the output. What allows us to abstract this is the indi�erentiability proof

in the previous section (and the lemma about indi�erentiability of truncation of random

oracles, to be able to have values of l that are not an integer multiple of the length of

HMAC’s output). Also, this change in notation makes it possible to use n unambiguously

as an index for the Chain functions.

48

4.3. A Security Model for WireGuard in CryptoVerif

De�nition 32 (HKDF-like Chain). Let m ≥ 1 be a �xed integer, let C and Cj with 0 ≤

j ≤ m + 1 be bitstrings of length l′, let vj with 0 ≤ j ≤ m be bitstrings of arbitrary length,

let l be the length of the output of H(Cj ,vj), and let rj with 0 ≤ j ≤ m be bitstrings of

length (l − l′). We de�ne the functions Chainn, 0 ≤ n < m and the function Chainm in the

following way:

Chainn(v0, . . . ,vn) =

C0 = const

for j = 0 to n :

Cj+1‖rj = H(Cj ,vj)

return rn

(4.3)

Chainm(v0, . . . ,vm) =

C0 = const

for j = 0 tom :

Cj+1‖rj = H(Cj ,vj)

return Cm+1‖rm

(4.4)

The functions Chainn,n < m, have an output of length (l − l′), and the output length of

Chainm is l .

In WireGuard, l′ = 256. Also, we de�ne Chainm specially because in WireGuard, the

�rst 256 bit block of the last HKDF call’s output is used as symmetric encryption key in

the continuation of the protocol, and not as a chaining value for a next HKDF call.

Lemma 2. Chainn, n ≤ m, are (tD, tS ,q, ϵ)-indi�erentiable from independent random

oracles, where ϵ = O(q2/2l
′

) and tS = O(q
2), and O just hides small constants.

Proof. We consider the following two games G0 and G1.

• The gameG0 in whichH is a random oracle and the functionsChainn with 0 ≤ n ≤ m
are de�ned from H by (4.3) and (4.4).

• The game G1 in which the functions Chainn with 0 ≤ n ≤ m are independent

random oracles and H is de�ned from them as follows.

Let L be a list of triples ((C,v), (Cj+1, rj), j) suchthatCj+1‖rj is the result of a previous

call to H(C,v) and j indicates the index of this H call in a chain of calls to H. If a call

to H was not coming from a chain of calls, the index j = −2 is used.

49

4. Proofs of Cryptographic Properties with CryptoVerif

H(C,v) =

1) if ((C,v), (Cj+1, r j), j) ∈ L for some Cj+1, r j , j then
return Cj+1‖r j

2) elseif C = const then
C1←$ {0, 1}l

′

r0 ← Chain0(v)

add ((C,v), (C1, r0), 0) to L

return C1‖r0

3) elseif ((Cj ,vj), (C, r j), j) ∈ L for some Cj ,vj , r j and j with 0 ≤ j < m then
for k = j − 1 to 0 do

�nd ((Ck ,vk), (Ck+1, rk),k) ∈ L for some Ck ,vk , rk

endfor
if j + 1 =m then
Cj+2‖r j+1 = Chainm(v0, . . . ,vj ,v)

else
Cj+2←$ {0, 1}l

′

r j+1 ← Chainj+1(v0, . . . ,vj ,v)

endif
add ((C,v), (Cj+2, r j+1), j + 1) to L

return Cj+2‖r j+1

4) else
C−1←$ {0, 1}l

′

r−2←$ {0, 1}l−l
′

add ((C,v), (C−1, r−2),−2) to L

return C−1‖r−2

endif

We shortly comment this simulator’s four cases in an informal way. In case 1 it

returns a previous result because the same call has already been made before. In

case 2 the call to H uses const as �rst argument and is thus the �rst call in a potential

chain of calls to H. Therefore the simulator uses Chain0 to get the result and writes

it to the list L with index 0. In case 3 the simulator �nds in L a previous call to H
that returned the current call’s C value as result. This means, with respect to the

hypothesis we present just after this paragraph, that the current call belongs to

a chain of previous calls that was started with a call responded to by case 2. The

simulator collects the arguments vk of those previous calls to be able to call the

appropriate Chainn oracle. If the simulator reaches case 4 this means that the call did

neither start a new chain nor belong to a previously started chain. Thus it chooses

fresh random values as a result and adds them with an index to L that makes sure

that it will never be considered as part of a chain.

50

4.3. A Security Model for WireGuard in CryptoVerif

Similar to the proof of Lemma 1, we name direct oracle calls to Chainn or H calls that are

done directly by the distinguisher, and indirect oracle calls the calls to H done from inside

Chainn in G0 and the calls to Chainn done from inside H in G1. Note for clari�cation that

in G0 there are no indirect calls to Chainn and in G1 there are no indirect calls to H.

We show that the two games G0 and G1 are indistinguishable as long as the following

hypotheses hold: In game G0,

H1. Consider Cj+1‖rj = H(Cj ,vj), j ≤ n < m that get’s called from inside a direct call

to Chainn(v1, . . . ,vj , . . . ,vn). If the distinguisher calls H(Cj+1,vj+1) before or after

the call to Chainn, then H(Cj ,vj) has been called directly by the distinguisher before

H(Cj+1,vj+1).

Stated informally, the distinguisher can only knowCj+1 if it was received as result from

H.

and in game G1,

H2. no fresh C is equal to the �rst argument of a previous call to H.

Stated informally, the distinguisher cannot prepend to a chain of H calls.

We have the following invariants:

P1. Given C,v , there is at most one pair ((Cj+1, rj), j) such that ((C,v), (Cj+1, rj), j) ∈ L.

Indeed, when L contains such an element, calls to H(C,v) immediately return Cj+1‖rj
in case 1, and never add another element ((C,v), (Cj+1, rj), j) to L.

P2. Given ((Cj ,vj), (C, rj), j) ∈ L, for some Cj ,vj , rj and j with 0 ≤ j < m then there is, for

each k = j − 1 to 0, a matching element ((Ck ,vk), (Ck+1, rk),k) in L.

More informally, this means that at no time there are entries in L that belong to chains

that are incomplete in the front, i. e. that did not start by a call to H withC = const. And

yet di�erently stated this means that the simulator can, in case 3, always reconstruct

the whole chain of H calls and collect the arguments vj .

If there is an element in L with j > 0 then this means that case 3 was executed before

for a matching H call and its result was added to the list with j′ = j − 1. This is because

of H2 and the fact that only in case 3 elements with j > 0 are added to the list. This

argument can be repeated recursively until reaching j = 1. For j = 0, the matching

element that started the chain was added by case 2, once again because of H2 and

because only in case 2 elements with j = 0 are added to the list.

We now treat all possible traces of calls in both games.

Case 1. Suppose the distinguisher makes a direct oracle call to H or Chainn with the same

arguments as a previous direct call to the same oracle. Both G0 and G1 return the same

result as in the previous call.

Case 2. Suppose the distinguisher makes a direct call to Chainn that has not been done

before as a direct call.

51

4. Proofs of Cryptographic Properties with CryptoVerif

Case2. a) InG0 the lastH(C,vn) in the chain that simulatesChainn(v0, . . . ,vn) has already

been called directly. Then by H1 the distinguisher did all H calls in the chain that simulates

Chainn(v0, . . . ,vn) directly.

The result in G0 is

_‖Chainn(v0, . . . ,vn) = H(C,vn)

which is the last part of the result of the previous call to H, or in the case of n =m

Chainm(v0, . . . ,vm) = H(C,vm) .

InG1, because the whole chain of H calls was made in the right order, Chainn(v0, . . . ,vn)
has already been invoked indirectly by the call to H(C,vn). Thus, this current call to Chainn
returns a previously �xed value, ful�lling the following equation:

H(C,vn) = Cj+1‖Chainn(v0, . . . ,vn)

or in the case of n =m

H(C,vm) = Chainm(v0, . . . ,vm) .

This is the same result as in G0.

Case 2. b) In G0 the last H(C,vn) in the chain that simulates Chainn(v0, . . . ,vn) has not
already been called directly. Like in the previous case, the result is

_‖Chainn(v0, . . . ,vn) = H(C,vn)

or in the case of n =m

Chainm(v0, . . . ,vm) = H(C,vm) ,

but as H(C,vn) and Chainn(v1, . . . ,vn) have not been called before directly, the result is

independent from previously returned values and thus looks like a fresh random value to

the distinguisher.

In G1, Chainn(v0, . . . ,vn) has not been invoked before and thus returns a fresh random

value.

Case 3. Suppose the distinguisher makes a direct call to H that has not been done before

as a direct call.

Case3. a) InG0 this call toH(C,vi) has already been done from inside aChainn(v0, . . . ,vn)
call. This means all other H calls belonging to this chain have also been done from inside

said Chainn call, in particular the call H(Ci−1,vi−1) directly before the current call (except

for C = const, thus if the current call is the beginning of a chain). H1 implies that the

distinguisher has then made a direct call to H(Ci−1,vi−1) before the current H call. By

recursively applying H1, the distinguisher has then directly made all H calls in the chain

up to the current one, in the right order.

52

4.3. A Security Model for WireGuard in CryptoVerif

Case 3. a) i) InG0, the current direct call to H(C,vn) has already been done as the last one
of the chain of calls indirectly invoked from inside a Chainn(v0, . . . ,vn) call.

In G0, the result ful�lls the following equation:

Cn+1‖Chainn(v0, . . . ,vn) = H(C,vn) ,

and in the case of n =m:

Chainm(v0, . . . ,vm) = H(C,vm) .

This is similar to case 2. a) just that the order of the calls is inverted and the following

small di�erence: The parts of H’s result coming from Chain are already known by the

distinguisher, while Cn+1 looks like a fresh random value.

In G1, because the whole chain of H calls was made in the right order, the current call

will invoke case 3 of the simulator’s algorithm and return

H(C,vn) = Cn+1‖Chainn(v0, . . . ,vn)

or in the case of n =m

H(C,vm) = Chainm(v0, . . . ,vm) .

The parts of H’s result coming from Chain are already known by the distinguisher, while

Cn+1 is a fresh random value. This is indistinguishable from the result in G0.

Case 3. a) ii) In G0, the current direct call to H(C,vi) has already been done from inside a

Chainn(v0, . . . ,vn) call, but not as the last one. This implies that said Chainn call was not

Chain0 – this is covered by case 3. a) i).

In G0, the result is thus a value �xed by a previous indirect call to H, but is independent

from the results of previous direct calls, and thus looks like a fresh random value to the

distinguisher.

In G1, because the whole chain of H calls was made in the right order, the current call

will invoke case 3 of the simulator’s algorithm and return a result via a Chainn call. This

Chainn call has not been made before by hypothesis and thus the result is a fresh random

value.

Case 3. b) In G0 this call to H(C,vi) has not been done before, neither directly nor

indirectly.
1

Hence, H returns a fresh random value.

In G1, the simulator’s case 1 is not relevant because this call has not been done before.

If C = const then H returns a fresh random C1 and a fresh random r0 via Chain0. This

call to Chain0 has not been done before because this would have invoked the H call in

G0, which is excluded by the hypothesis. If ((Cj ,vj), (C, rj), j) ∈ L for some Cj ,vj , rj and

0 ≤ j < m, this means that the current call to H(C,vi) appends to a chain. Thus, a fresh

randomCj+2‖rj+1 is returned. The involved Chainj+1 or Chainm has not been called before

1
This means there is no involvement of previous calls to Chainn , but the distinguisher can build an H
chain with direct calls.

53

4. Proofs of Cryptographic Properties with CryptoVerif

for the same reason as Chain0 above. To conclude, a fresh random value is returned in

every case in G1.

The previous proof shows that the games G0 and G1 are indistinguishable assuming the

hypotheses H1 and H2 hold. We will now bound the probability that they do not hold.

Suppose that there are at most q queries, direct or indirect, to H.

• When H1 does not hold, the distinguisher does an H call from a chain correspond-

ing to an earlier or later Chainn call without having done the H calls starting

from the beginning of the chain, by using the matching C value. There are at

most

(∑m
n=0

n · qChainn
)

di�erent C values from H, and the distinguisher has qH at-

tempts to hit a matching one, so the probability that H1 does not hold is at most(∑m
n=0

n · qChainn
)
· qH/2

l ′
.

• The probability that H2 does not hold is at most the probability that among qH
random values in {0, 1}l

′

, two of them collide, so it is at most q2

H/2
l ′

.

Hence, the probability that G0 and G1 are distinguished is at most(∑m
n=0

n · qChainn
)
· qH + q

2

H

2
l ′

.

For completeness, we reproduce Lemma 3 and its proof from [39]. It states that the

truncation of a random oracle is indi�erentiable from a random oracle.

Lemma 3. If H is a random oracle that returns bitstrings of length l , then the truncation

of H to length l′ < l is (tD, tS ,q, 0)-indi�erentiable from a random oracle, where tS = O(q).

Proof. Consider

• the gameG0 in which H is a random oracle, and H ′(x) is H (x) truncated to length l′, and

• the game G1 in which H ′ is a random oracle that returns bitstrings of length l′ and

H (x) = H ′(x)‖H ′′(x) where H ′′ is a random oracle that returns bitstrings of length l − l′.

It is easy to see that these two games are perfectly indistinguishable, which proves indif-

ferentiability.

As a last step, we prove the following lemma.

Lemma 4. If H1 and H2 are random oracles de�ned on the same domain D that return

bitstrings of length l1 and l2 respectively, then a random oracle H de�ned on the same

domain that returns bitstrings of length (l1 + l2) is (tD, tS ,q, 0)-indi�erentiable from this

construction.

Proof. Consider

• the game G0 in which H1 and H2 are random oracles and H is the concatenation of

their outputs: H (x) = H1(x)‖H2(x).

54

4.3. A Security Model for WireGuard in CryptoVerif

• the gameG1 in which H is a random oracle, H1(x) is the �rst l1 bit of H’s output and

H2(x) is the last l2 bit of H’s output.

It is easy to see that these two games are perfectly indistinguishable, which proves indif-

ferentiability.

In WireGuard, l1 = l2 = 512.

By combining Lemmas 1 to 4, we conclude that our modelling of WireGuard’s HKDF
chains is indi�erentiable from the original, with n = 3.

Coming back to themodelling of theHKDF chain in CryptoVerif. For the �rst two random

oracles, we can instantiate macros built-in to CryptoVerif’s library: one for two arguments

and one for three arguments. This gives us the following de�nitions:

1 type hashkey_t [fixed].

2 type hashoutput_t [large,fixed].

3 const dummy_hashoutput: hashoutput_t.

4 fun hashoutput_to_bitstring(hashoutput_t): bitstring [data].

5

6 fun rom1(hashkey_t, G_t, G_t): key_t.

7 fun rom2(hashkey_t, G_t, G_t, G_t): key_t.

For the last one, we create our own macro for seven arguments. Also, because the output

of the third macro needs to be split into four variables, we de�ne a type four_keys_t and

functions to split it into individual keys.

1 type four_keys_t [large,fixed].

2

3 fun concat(key_t, key_t, key_t, key_t): four_keys_t [data].

4 fun get_part1(four_keys_t): key_t [projection].

5 fun get_part2(four_keys_t): key_t [projection].

6 fun get_part3(four_keys_t): key_t [projection].

7 fun get_part4(four_keys_t): key_t [projection].

The function rom3_intermediate is a random oracle with an equivalence as the one de�ned

above, and rom3 is a convenience wrapper around it, directly returning the four individual

keys.

1 fun rom3_intermediate(hashkey_t, G_t, G_t, G_t, G_t, G_t, G_t, psk_t): ←↩

four_keys_t.

2

3 letfun rom3(key_rom: hashkey_t, arg1: G_t, arg2: G_t, arg3: G_t, arg4: G_t, ←↩

arg5: G_t, arg6: G_t, arg7: psk_t) =

4 let parts: four_keys_t = rom3_intermediate(key_rom, arg1, arg2, arg3, arg4,←↩

arg5, arg6, arg7) in

5 let part1: key_t = get_part1(parts) in

6 let part2: key_t = get_part2(parts) in

7 let part3: key_t = get_part3(parts) in

8 let part4: key_t = get_part4(parts) in

9 (part1, part2, part3, part4).

55

4. Proofs of Cryptographic Properties with CryptoVerif

We need to formally establish for CryptoVerif to work with it, that the individual keys are

independent random values. We do this by de�ning the following equivalence:

1 equiv(split_hashoutput)

2 foreach ik <= Nk do r <-R hashoutput_t; (O1() := return(get_part1(r)) |

3 O2() := return(get_part2(r)) |

4 O3() := return(get_part3(r)) |

5 O4() := return(get_part4(r)) |

6 O5() := return(r))

7 <=(0)=>

8 foreach ik <= Nk do part1 <-R part1_t;

9 part2 <-R part2_t;

10 part3 <-R part3_t;

11 part4 <-R part4_t;

12 (O1() := return(part1) |

13 O2() := return(part2) |

14 O3() := return(part3) |

15 O4() := return(part4) |

16 O5() := return(concat(part1, part2, part3, part4))).

In our model we can then just use the three random oracles rom1, rom2, and rom3. After

they are converted to find constructs, we need to apply the equivalence split_hashoutput

so CryptoVerif can continue working with the individual keys.

Hash Function. The hash function employed by WireGuard needs to be a collision re-

sistant hash function following the Noise speci�cation. The CryptoVerif cryptographic

library contains a macro for a collision resistant hash function. We adapt this to a hash

function taking two inputs, because the protocol always hashes the concatenation of a

previous hash output with a new input.

1 def CollisionResistant_hash_pair(key_t, hashinput1_t, hashinput2_t, ←↩

hashoutput_t, hash, hashoracle, P_hash) {

2

3 fun hash(key_t, hashinput1_t, hashinput2_t):hashoutput_t.

4

5 collision k <-R key_t; forall x1:hashinput1_t, x2:hashinput2_t, y1:←↩

hashinput1_t, y2:hashinput2_t;

6 return(hash(k, x1, x2) = hash(k, y1, y2)) <=(P_hash(time))=> return(x1 = ←↩

y1 && x2 = y2).

7

8 channel ch1, ch2.

9 let hashoracle(k: key_t) =

10 in(ch1, ());

11 out(ch2, k).

12 }

The equivalence in line 5 is a special notation for collisions. It replaces the comparison of

the results of two calls to the same hash function by a comparison of the arguments of

the calls. The probability to distinguish is then the probability that the attacker �nds a

56

4.3. A Security Model for WireGuard in CryptoVerif

collision in a given time. Note that the hash function takes a key as �rst input. This just

serves to model di�erent hash functions with the same macro. We could thus name the

key we use in our model blake2s. Because the attacker needs to be able to use the hash

function, the macro makes an oracle available that the attacker can call to retrieve the key.

We use the following code to instantiate the macro:

1 proba P_hash. (* probability of breaking collision resistance *)

2 expand CollisionResistant_hash_pair(

3 (* types *)

4 hashkey_t, (* key of the hash function, models the choice of *)

5 (* the hash function *)

6 hashoutput_t, (* first argument that gets hashed. See the comment *)

7 (* just above this macro for an explanation. *)

8 bitstring, (* second argument that gets hashed. *)

9 hashoutput_t, (* output type of the hash function *)

10 (* functions *)

11 hash, (* name of the hash function: *)

12 (* hash(hashkey_t, hashoutput_t, bitstring): hashoutput_t *)

13 (* processes *)

14 hash_oracle, (* name of the oracle that will make available the *)

15 (* hash key to the attacker *)

16 (* parameters *)

17 P_hash (* probability of breaking collision resistance *)

18).

19 (* constants used in the transcript hashing *)

20 const hash_construction_identifier : hashoutput_t.

21 (* This is hash(hash("Noise_IK...") || "WireGuard v1 ..."), and it’s *)

22 (* the same for all parties, so no need to calculate it with hash() *)

23 const label_mac1: hashoutput_t. (* This is "mac1----" *)

The comment in line 12 describes how the hash function is called. It takes the key, then a

value of type hashoutput_t and a second value of type bitstring. The function returns

a value of type hashoutput_t, equally. This chain of hashoutput_t values needs to be

started somewhere, and that is why we de�ne a constant in line 20. It stands for the result

of the hash computation in the second line of the �rst protocol message. This result is a

protocol constant, so in our model it is not necessary to calculate it dynamically.

We de�ne several wrapper functions around hash, taking care of type conversion and

thus making the code for the protocol messages easier to read:

1 letfun mix_hash_G(key_hash: hashkey_t, prev_hash: hashoutput_t, value: G_t) =

2 hash(key_hash, prev_hash, G_to_bitstring(value)).

3

4 letfun mix_hash_bitstring(key_hash: hashkey_t, prev_hash: hashoutput_t, value←↩

: bitstring) =

5 hash(key_hash, prev_hash, value).

6

7 letfun mix_hash_key(key_hash: hashkey_t, prev_hash: hashoutput_t, value: ←↩

key_t) =

57

4. Proofs of Cryptographic Properties with CryptoVerif

8 hash(key_hash, prev_hash, key_to_bitstring(value)).

4.3.2. Modelling the Protocol Messages, Timestamps and Nonces

Before showing how we calculate the protocol messages in CryptoVerif, we de�ne some

more types speci�c to the WireGuard protocol:

1 type msg_type_t [fixed]. (* 1 byte msg type field *)

2 const msg_type_init2resp: msg_type_t.

3 const msg_type_resp2init: msg_type_t.

4 const msg_type_data: msg_type_t.

5 const msg_type_cookie_reply: msg_type_t.

6

7 type reserved_t [fixed]. (* 3 byte reserved field *)

8 const reserved: reserved_t.

9

10 type session_index_t [fixed]. (* 4 byte session identifier field *)

11 const dummy_session_index: session_index_t.

12 type timestamp_t [fixed]. (* 12 byte timestamps *)

13 const dummy_timestamp: timestamp_t.

14 fun timestamp_to_bitstring(timestamp_t): bitstring [data].

Timestamps. WireGuard speci�es that the responder keeps the latest timestamp it re-

ceived per peer. In CryptoVerif’s process calculus, variables cannot be overwritten. Also, it

is not possible to express order relations, which we would need to handle strictly increas-

ing timestamps. Instead, we store all received timestamps in a table and do not accept a

message with an already used timestamp.

1 table rcvd_timestamps(G_t, G_t, timestamp_t).

This is not an exact model of the real protocol, but it e�ectively prevents the attacker

from replaying a �rst protocol message. A timestamp is not a uniform random value, thus

choosing it randomly within the type timestamp_t would be a too strong assumption. It

is also not a constant, because it is di�erent for each �rst protocol message. We decided to

let the attacker provide the timestamp to be used.

Nonces. Nonces are incremented by one with each message, which we also cannot model

in CryptoVerif. Just as with the timestamps, we use tables to keep track of already used

nonces. Also, we let the attacker choose which nonce should be used in a transport data

message and abort if it provides an already used nonce.

1 type side.

2 const is_initiator: side.

3 const is_responder: side.

4 (* the bitstring is used as tuple (side, replication_index) *)

5 table sent_nonces(bitstring, nonce_t).

6 table recv_nonces(bitstring, nonce_t).

58

4.3. A Security Model for WireGuard in CryptoVerif

We use one table for nonces used to send (encrypt) messages, and another table for nonces

used to receive (decrypt) messages. We use a tuple of a variable indicating initiator or

responder, and the replication index as index for the table, to separate the nonces used by

each participant, in each session.

The Protocol Messages. The computation of the protocol messages has been separated

into functions prepare and process for each protocol message. These functions are called

by initiator and responder respectively. In the following, variable names ending in _i

denote a variable from the initiator, and the ending _r a variable from the responder.

Two-letter combinations of e and s denote a Di�e-Hellman computation between an

ephemeral (e) or long-term (s) key, where the �rst letter indicates the used key from the

initiator and the second key the used key from the responder. The ending _i or _r in this

case denotes the initiators or the responders view on the variable. In a successful protocol

execution between initiator and responder, es_i = es_r etc. The su�x _recv denotes

a variable received or derived from a variable received from the other peer. Again, in a

successful protocol run, timestamp_i = timestamp_i_recv.

The goal of the separation into functions for preparing and processing protocol messages

is to make comparison with both the speci�cation and implementations easier.

First Protocol Message. The �rst protocol message from the initiator to the responder is

calculated as follows. The function receives the necessary hash and random oracle keys

as argument, as well as the long-term public key S
pub
X , the initiator’s keypair (S

priv
i , S

pub
i),

and the timestamp. The peer’s long-term public key is called S_X_pub_foo, because for

technical reasons we could not re-use S_X_pub, which is already used in the top-level

process (the top-level process will be described later).

1 letfun prepare1(

2 key_hash: hashkey_t,

3 key_rom1: hashkey_t,

4 key_rom2: hashkey_t,

5 S_X_pub_foo: G_t,

6 S_i_priv: Z_t,

7 S_i_pub: G_t,

8 timestamp_i: timestamp_t) =

9

10 new I_i: session_index_t;

11 new E_i_priv: Z_t;

12 let E_i_pub: G_t = exp(g, E_i_priv) in

13

14 let H_i1: hashoutput_t = mix_hash_G(key_hash, hash_construction_identifier,←↩

S_X_pub_foo) in

15 let H_i2: hashoutput_t = mix_hash_G(key_hash, H_i1, E_i_pub) in

16

17 let es_i: G_t = DH(S_X_pub_foo, E_i_priv) in

18 let k_i2: key_t = rom1(key_rom1, E_i_pub, es_i) in

19

59

4. Proofs of Cryptographic Properties with CryptoVerif

20 let static_i_enc: bitstring = enc_G(S_i_pub, H_i2, k_i2, nonce_0) in

21 let H_i3: hashoutput_t = mix_hash_bitstring(key_hash, H_i2, static_i_enc) ←↩

in

22

23 let ss_i: G_t = DH(S_X_pub_foo, S_i_priv) in

24 let k_i3: key_t = rom2(key_rom2, E_i_pub, es_i, ss_i) in

25

26 let timestamp_i_enc: bitstring = enc_timestamp(timestamp_i, H_i3, k_i3, ←↩

nonce_0) in

27

28 let H_i4: hashoutput_t = mix_hash_bitstring(key_hash, H_i3, timestamp_i_enc←↩

) in

29

30 let msg_alpha: bitstring = concat_msg_alpha_1(msg_type_init2resp, reserved,←↩

I_i, E_i_pub, static_i_enc, timestamp_i_enc) in

31 let mac1_i: mac_t = mac(msg_alpha, hash(key_hash, label_mac1, ←↩

G_to_bitstring(S_X_pub_foo))) in

32 (* Dummy mac2 for the moment *)

33 new mac2_i: mac_t;

34 (I_i, E_i_priv, E_i_pub, static_i_enc, timestamp_i_enc, mac1_i, mac2_i, ←↩

es_i, ss_i, H_i4).

This calculation is a direct translation of the WireGuard protocol as it is described in

Section 3.2, except for the di�erent modelling of theHKDF chain. The �rst symmetric key is

derived with the rom1 function; it depends on E
pub
i and the Di�e-Hellman function between

S
pub
X and E

priv
i , just as in the original protocol. The second symmetric key is derived with

the rom2 function; it depends on E
pub
i , the Di�e-Hellman function between S

pub
X and E

priv
i ,

and the Di�e-Hellman function between S
pub
X and S

priv
i , just as in the original protocol. We

do not model the second MAC. It is part of the cookie reply system, that a party can use in

case of load, to force the sending party to do another roundtrip. Also, the second MAC only

depends on public values. This means that in our model (we will elaborate on that later),

the attacker knows with whom the parties are talking and thus, could just calculate the

second MAC itself. The last line of the function returns all values needed to send the �rst

protocol message (I_i, E_i_pub, static_i_enc, timestamp_i_enc, mac1_i, mac2_i) and to

continue the protocol (es_i, ss_i, H_i4). The ephemeral private key is returned for its

optional compromise.

The responder, upon receiving a �rst protocol message, calls the following function to

process it. The function takes the usual hash keys as arguments, all variables received in

the protocol message, and the responder’s long-term key pair (E
priv
r ,E

pub
r).

1 letfun process1(

2 key_hash: hashkey_t,

3 key_rom1: hashkey_t,

4 key_rom2: hashkey_t,

5 S_r_priv: Z_t,

6 S_r_pub: G_t,

7 I_i_recv: session_index_t,

60

4.3. A Security Model for WireGuard in CryptoVerif

8 E_i_pub_recv: G_t,

9 static_i_enc_recv: bitstring,

10 timestamp_i_enc_recv: bitstring,

11 mac1_i_recv: mac_t, mac2_i_recv: mac_t

12) =

13

14 let msg_alpha: bitstring = concat_msg_alpha_1(msg_type_init2resp, reserved,←↩

I_i_recv, E_i_pub_recv, static_i_enc_recv, timestamp_i_enc_recv) in

15 if check(msg_alpha, hash(key_hash, label_mac1, G_to_bitstring(S_r_pub)), ←↩

mac1_i_recv) then

16 (

17 (* We don’t verify mac2. *)

18

19 let H_r1: hashoutput_t = mix_hash_G(key_hash, ←↩

hash_construction_identifier, S_r_pub) in

20 let H_r2: hashoutput_t = mix_hash_G(key_hash, H_r1, E_i_pub_recv) in

21

22 let es_r: G_t = DH(E_i_pub_recv, S_r_priv) in

23 let k_r2: key_t = rom1(key_rom1, E_i_pub_recv, es_r) in

24

25 let injbot(G_to_bitstring(S_i_pub_recv: G_t)) = dec_ad_hash(←↩

static_i_enc_recv, H_r2, k_r2, nonce_0) in

26 (

27 let H_r3: hashoutput_t = mix_hash_bitstring(key_hash, H_r2, ←↩

static_i_enc_recv) in

28

29 let ss_r: G_t = DH(S_i_pub_recv, S_r_priv) in

30 let k_r3: key_t = rom2(key_rom2, E_i_pub_recv, es_r, ss_r) in

31

32 let injbot(timestamp_to_bitstring(timestamp_i_recv: timestamp_t)) = ←↩

dec_ad_hash(timestamp_i_enc_recv, H_r3, k_r3, nonce_0) in

33 (

34 let H_r4: hashoutput_t = mix_hash_bitstring(key_hash, H_r3, ←↩

timestamp_i_enc_recv) in

35 (true, es_r, ss_r, S_i_pub_recv, H_r4, timestamp_i_recv)

36) else (

37 (* timestamp did not decrypt *)

38 (false, dummy_g, dummy_g, dummy_g, dummy_hashoutput, dummy_timestamp)

39)

40) else (

41 (* static did not decrypt *)

42 (false, dummy_g, dummy_g, dummy_g, dummy_hashoutput, dummy_timestamp)

43)

44) else (

45 (* mac1 did not verify *)

46 (false, dummy_g, dummy_g, dummy_g, dummy_hashoutput, dummy_timestamp)

47).

61

4. Proofs of Cryptographic Properties with CryptoVerif

This function does the same computations, just replacing the Di�e-Hellman computations

accordingly. At the veri�cation of the MAC, and the two decryptions, the function returns

directly in case of error. The �rst return value is then set to false, which permits the caller

of the function to abort the protocol. In lines 25 and 32, pattern matching is used to convert

the type and check for correct decryption with injbot. In case of success, the function

returns all variables needed to continue the protocol by computing the second protocol

message.

Second Protocol Message. The second protocol message is sent by the responder. It calls

the following function to prepare it:

1 letfun prepare2(

2 key_hash: hashkey_t,

3 key_rom3: hashkey_t,

4 I_i_recv: session_index_t, S_i_pub_recv: G_t, E_i_pub_recv: G_t,

5 H_r4: hashoutput_t, es_r: G_t, ss_r: G_t, Q: psk_t) =

6

7 new I_r: session_index_t;

8 new E_r_priv: Z_t;

9 let E_r_pub: G_t = exp(g, E_r_priv) in

10

11 let ee_r: G_t = DH(E_i_pub_recv, E_r_priv) in

12 let se_r: G_t = DH(S_i_pub_recv, E_r_priv) in

13

14 let H_r5: hashoutput_t = mix_hash_G(key_hash, H_r4, E_r_pub) in

15

16 let (tau_r4: key_t, k_r4: key_t, T_r_recv: key_t, T_r_send: key_t) = rom3(←↩

key_rom3, E_i_pub_recv, es_r, ss_r, E_r_pub, ee_r, se_r, Q) in

17 (

18 let H_r6: hashoutput_t = mix_hash_key(key_hash, H_r5, tau_r4) in

19

20 let empty_bitstring_r_enc: bitstring = enc_bitstring(empty_bitstring, ←↩

H_r6, k_r4, nonce_0) in

21 let H_r7: hashoutput_t = mix_hash_bitstring(key_hash, H_r6, ←↩

empty_bitstring_r_enc) in

22

23 let msg_alpha: bitstring = concat_msg_alpha_2(msg_type_init2resp, ←↩

reserved, I_r, I_i_recv, E_r_pub, empty_bitstring_r_enc) in

24 let mac1_r: mac_t = mac(msg_alpha, hash(key_hash, label_mac1, ←↩

G_to_bitstring(S_i_pub_recv))) in

25 (* Dummy mac2 for the moment *)

26 new mac2_r: mac_t;

27

28 (true, I_r, E_r_priv, E_r_pub, T_r_recv, T_r_send, empty_bitstring_r_enc,←↩

mac1_r, mac2_r)

29) else (

62

4.3. A Security Model for WireGuard in CryptoVerif

30 (false, dummy_session_index, dummy_z, dummy_g, dummy_key, dummy_key, ←↩

dummy_bitstring, dummy_mac, dummy_mac)

31).

This is an exact translation of the protocol message de�ned in Section 3.2 execpt line 16.

This is the derivation of both the third symmetric key and the transport data keys. They

depend on both the initiator’s and the responder’s ephemeral public keys, all Di�e-

Hellman computations, and the pre-shared symmetric key Q . The pattern matching

in line 16 cannot fail the way we de�ned the type conversion, but in letfun function

de�nitions, CryptoVerif demands to handle this case, and that is why we need to in-

clude line 30. The function returns all values needed to send the second protocol mes-

sage (I_r, E_r_pub, empty_bitstring_r_enc, mac1_r, mac2_r), and continue the protocol

(T_r_recv, T_r_send). The ephemeral private key is returned for its optional compromise.

The initiator uses the following function to process the second protocol message.

1 letfun process2(

2 key_hash: hashkey_t,

3 key_rom3: hashkey_t,

4 I_i: session_index_t, I_r_recv: session_index_t, E_i_priv: Z_t, ←↩

E_i_pub: G_t, S_i_priv: Z_t, S_i_pub: G_t,

5 E_r_pub_recv: G_t, empty_bitstring_r_enc_recv: bitstring, ←↩

mac1_r_recv: mac_t, mac2_r_recv: mac_t,

6 H_i4: hashoutput_t,

7 es_i: G_t, ss_i: G_t, Q: psk_t) =

8

9 let ee_i: G_t = DH(E_r_pub_recv, E_i_priv) in

10 let se_i: G_t = DH(E_r_pub_recv, S_i_priv) in

11

12 let msg_alpha: bitstring = concat_msg_alpha_2(msg_type_init2resp, reserved,←↩

I_r_recv, I_i, E_r_pub_recv, empty_bitstring_r_enc_recv) in

13 if check(msg_alpha, hash(key_hash, label_mac1, G_to_bitstring(S_i_pub)), ←↩

mac1_r_recv) then

14 (

15 (* We don’t verify mac2 at the moment. *)

16

17 let H_i5: hashoutput_t = mix_hash_G(key_hash, H_i4, E_r_pub_recv) in

18

19 let (tau_i4: key_t, k_i4: key_t, T_i_send: key_t, T_i_recv: key_t) = rom3←↩

(key_rom3, E_i_pub, es_i, ss_i, E_r_pub_recv, ee_i, se_i, Q) in

20 (

21 let H_i6: hashoutput_t = mix_hash_key(key_hash, H_i5, tau_i4) in

22

23 let injbot(=empty_bitstring) = dec_ad_hash(empty_bitstring_r_enc_recv, ←↩

H_i6, k_i4, nonce_0) in

24 (

25 let H_i7: hashoutput_t = mix_hash_bitstring(key_hash, H_i6, ←↩

empty_bitstring_r_enc_recv) in

26 (true, T_i_send, T_i_recv)

63

4. Proofs of Cryptographic Properties with CryptoVerif

27) else (

28 (* empty_bitstring_r_enc_recv did not decrypt *)

29 (false, dummy_key, dummy_key)

30)

31) else (

32 (* weird case where the rom3 pattern matching did not work *)

33 (false, dummy_key, dummy_key)

34)

35) else (

36 (* mac1 did not verify *)

37 (false, dummy_key, dummy_key)

38).

This does the same computations, just with the according Di�e-Hellman parameters. In

case of failed MAC veri�cation, failed pattern matching of rom3, or failed decryption, an

error tuple is returned. Otherwise all values needed to proceed in the protocol are returned,

which are the two transport data keys.

Third Protocol Message. The third protocol message is the �rst transport data message.

We model it separately, because it is only sent from initiator to responder. For the other

transport data messages we use functions that are called from both initiator and responder.

The function takes as argument the transport data key T send
i and the index side_index for

the table of sent nonces. The other arguments are needed for the left-or-right message

indistinguishability game that is used to model the secrecy properties of the protocol.

clean is a boolean that indicates if the initiator talks to a honest party and speci�cally not

to the attacker. Also, it is set to false if the session is in a compromise scenario that would

trivially break the protocol. The boolean secret_bit is the global bit that determines

which one of the two attacker-provided plaintexts plaintext_0 or plaintext_1 should be

encrypted. The function proceeds as follows:

1 letfun prepare3(clean: bool,

2 secret_bit_I: bool, plaintext_0: bitstring, plaintext_1: bitstring,

3 side_index: bitstring, T_i_send: key_t) =

4

5 if (Zero(plaintext_0) = Zero(plaintext_1)) && (clean || (plaintext_0 = ←↩

plaintext_1)) then

6 (

7 (* Send a transport data message *)

8 let plaintext: bitstring = test(secret_bit_I, plaintext_0, plaintext_1) ←↩

in

9 let ciphertext_keyconfirmation = enc(plaintext, empty_bitstring, T_i_send←↩

, nonce_0) in

10 insert sent_nonces(side_index, nonce_0);

11 (true, ciphertext_keyconfirmation, plaintext)

12) else (

13 (* we do not play because either

14 * the plaintexts do not have the same length, or

64

4.3. A Security Model for WireGuard in CryptoVerif

15 * we are talking to the attacker and the plaintexts are not equal *)

16 (false, dummy_bitstring, dummy_bitstring)

17).

The function �rst checks if it is in any scenario in which it is safe to encrypt something

with the transport data key. This is the case if the plaintexts have the same length and

it is an clean session as de�ned above. If it is not a clean session, but the plaintexts are

equal, it can also proceed: In this case, encryption does not reveal the secret bit. The

game is not entirely aborted in case of a non-clean session because we want to be able to

prove correspondence properties. After checking this condition, the function proceeds by

choosing the plaintext and encrypting it. The �rst transport data message is de�ned to

use the zero nonce, which is added to the table after encryption. The functions returns

ciphertext and plaintext. We de�ned the test function with the following equations:

1 fun test(bool, bitstring, bitstring) : bitstring.

2

3 equation forall x:bitstring, y:bitstring; test(true, x, y) = x.

4 equation forall x:bitstring, y:bitstring; test(false, x, y) = y.

5

6 (* Knowing the equations defined above, this can be deduced, but

7 CryptoVerif can’t do this on its own. *)

8 equation forall x:bitstring, b:bool; test(b,x,x) = x.

9 equation forall x:bitstring, y:bitstring, b:bool; Zero(test(b,x,y)) = test (b←↩

,Zero(x),Zero(y)).

The reason for this is that CryptoVerif’s process calculus does not allow branches to be

re-united. We could use if to branch on secret_bit, but then we would need to duplicate

all code.

The responder calls the following function to handle this �rst transport data message:

1 letfun process3(

2 ciphertext_keyconfirmation_recv: bitstring,

3 T_r_recv: key_t, side_index: bitstring) =

4

5 let injbot(plaintext) = dec(ciphertext_keyconfirmation_recv, ←↩

empty_bitstring, T_r_recv, nonce_0) in

6 (

7 insert recv_nonces(side_index, nonce_0);

8 (true, plaintext)

9) else (

10 (* ciphertext did not decrypt *)

11 (false, dummy_bitstring)

12).

Transport Data Messages. Initiator and responder process both use the following func-

tions to prepare and process a transport data message. The function prepare_msg takes

the same arguments as prepare3, with the attacker-chosen nonce additionally.

65

4. Proofs of Cryptographic Properties with CryptoVerif

1 letfun prepare_msg(

2 side_index: bitstring, secret_bit_I: bool,

3 plaintext_0: bitstring, plaintext_1: bitstring, nonce: nonce_t,

4 clean: bool,

5 T_i_send: key_t) =

6

7 if Zero(plaintext_0) = Zero(plaintext_1) && (clean || (plaintext_0 = ←↩

plaintext_1)) then

8 (

9 get sent_nonces(=side_index, =nonce) in (false, empty_bitstring) else

10 insert sent_nonces(side_index, nonce);

11

12 let plaintext = test(secret_bit_I, plaintext_0, plaintext_1) in

13 let ciphertext = enc(plaintext, empty_bitstring, T_i_send, nonce) in

14 (true, ciphertext, plaintext)

15) else (

16 (false, dummy_bitstring, dummy_bitstring)

17).

The check if we encrypt is exactly the same as in prepare3. Before encryption, the function

veri�es if the nonce was already used. If yes, it aborts and returns an error value. If not,

then it inserts the nonce in the table and proceeds with encryption.

Processing of a transport data message by the receiver works equivalently. Before

decryption, it is checked if the nonce was already used.

1 letfun process_msg(

2 side_index: bitstring, counter_recv: counter_t,

3 ciphertext_recv: bitstring, T_i_recv: key_t) =

4

5 let nonce_to_counter(nonce_recv) = counter_recv in

6 (

7 get recv_nonces(=side_index, =nonce_recv) in (false, empty_bitstring) ←↩

else

8 insert recv_nonces(side_index, nonce_recv);

9 let injbot(plaintext) = dec(ciphertext_recv, empty_bitstring, T_i_recv, ←↩

nonce_recv) in

10 (

11 (true, plaintext)

12) else (

13 (* decryption failed *)

14 (false, dummy_bitstring)

15)

16) else (

17 (* weird subcase when the nonce can’t be casted to a counter *)

18 (false, dummy_bitstring)

19).

66

4.3. A Security Model for WireGuard in CryptoVerif

4.3.3. Execution Environment

In this section, we describe the execution environment of our model, that is the interaction

between challenger and attacker. This includes how we set up the game and which oracles

the attacker has access to. Also, we will elaborate on our de�nition of partner sessions.

A secondary goal of this section is to describe said components in a style similar to

how this is done in eCK-like models and the ACCE model, to facilitate comparison and

understanding.

We consider a security game played between a challenger C and an adversary A.

Generally speaking, our goal is to prove that two honest parties can execute the protocol

securely in an adversarial environment.

Setting Up The Game The adversary starts the security game by providing the challenger

with a bit use_psk that indicates if the two honest parties should use a pre-shared key in

the protocol:

1 process

2 in(c_start, (use_psk: bool));

The challenger then proceeds to set up the game. First it randomly chooses the pre-shared

key, and then sets the variable Q to a choice between this random psk and the constant

zero psk.

3 new psk: psk_t;

4 let Q: psk_t = optional_psk(use_psk, psk, psk_0) in

The function optional_psk is just de�ned as the test function used for the two plaintexts:

If use_psk is true, in evaluates to psk, and otherwise to psk_0. This permits us to handle

both cases in one security game. As a next step, the challenger generates the keys for the

hash function and the random oracles that model HKDF:

5 new key_hash: hashkey_t;

6 new key_rom1: hashkey_t;

7 new key_rom2: hashkey_t;

8 new key_rom3: hashkey_t;

Then, the long-term keys of the two parties are generated:

9 new S_i_priv: Z_t;

10 let S_i_pub = exp(g, S_i_priv) in

11 new S_r_priv: Z_t;

12 let S_r_pub = exp(g, S_r_priv) in

Finally, the secret bit for the left-or-right message indistinguishability games is chosen,

and the challenger hands over control to the attacker by sending the two long-term public

keys over a channel:

13 new secret_bit : bool;

14 out(c_publickeys, (S_i_pub, S_r_pub));

The attacker can then access the following oracles which we will describe in the following.

67

4. Proofs of Cryptographic Properties with CryptoVerif

15 (

16 (initiator(key_hash, key_rom1, key_rom2, key_rom3, S_i_priv, S_i_pub, ←↩

S_r_pub, Q, secret_bit)) |

17 (responder(key_hash, key_rom1, key_rom2, key_rom3, S_r_priv, S_i_pub, ←↩

S_r_pub, Q, secret_bit)) |

18 (rom1_oracle(key_rom1)) | (rom2_oracle(key_rom2)) | (rom3_oracle(key_rom3)←↩

) |

19 (hash_oracle(key_hash)) |

20 (corrupt_S_i(S_i_priv)) |

21 (corrupt_S_r(S_r_priv)) |

22 (corrupt_psk(Q))

23)

Actually, all in channels are oracles to the attacker. However, the above processes all start

with an in channel (they have to, because the challenger just used an out channel).

Let us begin with the hash and corruption oracles, because they are shorter and have

only one in channel.

• The three oracles rom1_oracle, rom2_oracle, and rom3_oracle permit the attacker to

call the random oracles with its own values. We show the de�nition of rom1_oracle,

the others are de�ned accordingly with more variables:

1 param N_qH1 [noninteractive].

2 channel ch1, ch2.

3 let rom1_oracle(k: hashkey_t) =

4 foreach iH <= N_qH1 do

5 in(ch1, (x1: G_t, x2: G_t));

6 out(ch2, hash(k, x1, x2)).

The parameters N_qH1, N_qH2, and N_qH3 are the number of calls the attacker is

allowed to issue to each oracle. As all parameters in CryptoVerif, they implicitely

are polynomial in the security parameter.

• The corruption oracles corrupt_S_i, corrupt_S_r, and corrupt_psk permit the

attacker to get the respective keys. A variable is set and an event called. The variable

allows to react to the compromise in the game: In certain compromise scenarios

that would trivially break the protocol, we do not encrypt depending on the secret

bit. The event allows to formulate correspondence queries; if in certain compromise

scenarios we cannot prove a correspondence, we include the corruption event in an

or clause. The corruption oracles are all de�ned similarly:

1 let corrupt_S_i(S_i_priv: Z_t) =

2 in(c_corrupt_S_i, ());

3 let S_i_is_corrupted: bool = true in

4 event S_i_corrupted;

5 out(c_corrupt_S_i, (S_i_priv)).

6

7 let corrupt_S_r(S_r_priv: Z_t) =

8 in(c_corrupt_S_r, ());

68

4.3. A Security Model for WireGuard in CryptoVerif

9 let S_r_is_corrupted: bool = true in

10 event S_r_corrupted;

11 out(c_corrupt_S_r, (S_r_priv)).

12

13 let corrupt_psk(Q: psk_t) =

14 in(c_corrupt_psk, ());

15 let psk_is_corrupted: bool = true in

16 event psk_corrupted;

17 out(c_corrupt_psk, Q).

• We do not model the compromise of ephemeral keys dynamically via oracles. Instead,

we hardcode the compromise of ephemeral keys statically in separate �les. We

create one �le where E
priv
i is compromised, one �le where E

priv
r is compromised,

and another �le where both of them are compromised. Compromise is done by

sending the ephemeral private key along with the message in which the ephemeral

public key is sent. The reason for this is that the size of games is increased by each

additional compromise we allow; it at least doubles, because in each branch we

potentially have to handle both the case that the ephemeral is compromised or is
not compromised.

The separation into di�erent model �les becomes clearer in Section 4.5.

• The initiator process is included from within the challenger top-level process with a

tuple of arguments: As with the functions we de�ned earlier, it receives the keys for

the hash function and random oracles. Then, it receives the initiator’s long-term

key pair, the responder’s public key, the pre-shared key, and the secret bit. Inside,

the initiator spawns a replication of processes:

1 ! i_N_init_parties <= N_init_parties

By this, we model that the initiator can execute the protocol in parallel and se-

quentially. N_init_parties is then the parameter that will appear in the probability

formula as number of initiator sessions.

The initiator process has multiple in channels, one for each type of protocol message

it can receive, plus one channel that con�gures a new initiator session:

1 in(c_config_initiator, (S_X_pub: G_t, timestamp_i: timestamp_t));

Here, the attacker chooses with which long-term public key the initiator should

start a new protocol session, and which timestamp it should use for the �rst protocol

message. This corresponds to the Send message with special start symbol which is

used in eCK-like models to set up a new session. The initiator process provides three

further oracles. First, the one for the reception of the second protocol message:

1 in(c_resp2init_recv, (plaintext_0: bitstring, plaintext_1: bitstring, ←↩

(=msg_type_resp2init, =reserved, I_r_recv: session_index_t, =I_i, ←↩

E_r_pub_recv: G_t, empty_bitstring_r_enc_recv: bitstring, ←↩

mac1_r_recv: mac_t, mac2_r_recv: mac_t)));

69

4. Proofs of Cryptographic Properties with CryptoVerif

It receives all values from the second protocol message, and additionally the two

plaintexts for the left-or-right message indistinguishability game that the initiator

provides when sending the �rst transport data message (key con�rmation). Second,

in a process replication, an oracle that instructs the initiator to send a transport data

message:

1 ! i_Nis<=N_init_send

2 in(c_N_init_send_config, (plaintext_data_0: bitstring, plaintext_data_1←↩

: bitstring, nonce: nonce_t));

We hereby model a number of N_init_send parallel or sequential transport data

messages. And third, in a process replication, an oracle that lets the initiator receive

a transport data message:

1 ! i_Nir<=N_init_recv

2 in(c_N_init_recv, (=msg_type_data, =reserved, =I_i, counter_recv: ←↩

counter_t, ciphertext_data_recv: bitstring));

We hereby model a number of N_init_recv parallel or sequential transport data

messages.

With all these oracles, the attacker can test the reaction of the initiator to a protocol

message, according to the protocol speci�cation. We describe the details of the

initiator process just in the next subsection.

• The responder process is included from within the challenger top-level process just

as the initiator process. The only di�erence is that it receives S_r_priv as long-term

private key. The responder equally replicates N_resp_parties processes, which will

appear in the probability formula as number of responder sessions:

1 ! i_N_resp_parties <= N_resp_parties

The responder has no special activation channel, as a new responder session is

spawned by receiving the �rst protocol message. The responder provides four

oracles. First, the one for receiving the �rst protocol message:

1 in(c_init2resp_recv, (=msg_type_init2resp, =reserved, I_i_recv: ←↩

session_index_t, E_i_pub_recv: G_t, static_i_enc_recv: bitstring,←↩

timestamp_i_enc_recv: bitstring, mac1_i_recv: mac_t, mac2_i_recv←↩

: mac_t));

The parameters are those of the �rst protocol message de�ned in Section 3.2 without

special instructions from the attacker. Second, the oracle for receiving the �rst

transport data message (key con�rmation):

1 in(c_keyconfirm_recv, (=msg_type_data, =reserved, =I_r, =counter_0, ←↩

ciphertext_keyconfirmation_recv: bitstring));

And �nally the exactly same (modulo variable names) oracles for sending and

receiving transport data messages:

70

4.3. A Security Model for WireGuard in CryptoVerif

1 ! i_Nrs<=N_resp_send

2 in(c_N_resp_send_config, (plaintext_0: bitstring, plaintext_1: ←↩

bitstring, nonce: nonce_t));

And the one for receiving:

1 ! i_Nrr<=N_resp_recv

2 in(c_N_resp_recv, (=msg_type_data, =reserved, =I_r, counter_recv: ←↩

counter_t, ciphertext_data_recv: bitstring));

This was the description of the setup of the game and the oracles the attacker can interact

with. As a next step, we describe in detail how the initiator and responder oracles react

according to the protocol.

The Initiator’s Session Oracles.

• Upon reception of the con�guration message, the initiator prepares and sends the

�rst protocol message. It does so primarily by calling prepare1:

1 in(c_config_initiator, (S_X_pub: G_t, timestamp_i: timestamp_t));

2

3 let (I_i: session_index_t,

4 E_i_priv: Z_t, E_i_pub_foo: G_t, static_i_enc: bitstring,

5 timestamp_i_enc: bitstring, mac1_i: mac_t, mac2_i: mac_t,

6 es_i: G_t, ss_i: G_t, H_i4: hashoutput_t) =

7 prepare1(key_hash, key_rom1, key_rom2, S_X_pub, S_i_priv, S_i_pub, ←↩

timestamp_i) in

8

9 event sent1(E_i_pub_foo, static_i_enc, S_i_pub, timestamp_i_enc, ←↩

timestamp_i);

10 out(c_init2resp_send, (ifdef(‘E_i_compr’,‘E_i_priv’,‘dummy_z’), (←↩

msg_type_init2resp, reserved, I_i, E_i_pub_foo, static_i_enc, ←↩

timestamp_i_enc, mac1_i, mac2_i)));

In line 9, an event sent1 is called with arguments all non-constant protocol �elds

of the �rst protocol message and the according plaintexts. Then, the �rst protocol

message is output on a channel. Here, we see how we hardcode the compromise

of the ephemeral key using the m4 preprocessor. If we do not con�gure it with

compromise of the ephemeral, only a placeholder value is sent.

• Upon reception of the second protocol message, the initiator �rst processes the

message. It does so by calling the function process2 de�ned earlier:

1 in(c_resp2init_recv, (plaintext_0: bitstring, plaintext_1: ←↩

bitstring, (=msg_type_resp2init, =reserved, I_r_recv: ←↩

session_index_t, =I_i, E_r_pub_recv: G_t, ←↩

empty_bitstring_r_enc_recv: bitstring, mac1_r_recv: mac_t, ←↩

mac2_r_recv: mac_t)));

2

71

4. Proofs of Cryptographic Properties with CryptoVerif

3 let (continue: bool, T_i_send: key_t, T_i_recv: key_t) =

4 process2(key_hash, key_rom3, I_i, I_r_recv, E_i_priv, E_i_pub_foo←↩

, S_i_priv, S_i_pub, E_r_pub_recv, empty_bitstring_r_enc_recv←↩

, mac1_r_recv, mac2_r_recv, H_i4, es_i, ss_i, Q) in

5 if continue then

6

7 event rcvd2(if S_X_pub = S_r_pub then true else false, E_i_pub_foo,←↩

static_i_enc, S_i_pub, timestamp_i_enc, timestamp_i, ←↩

E_r_pub_recv, empty_bitstring_r_enc_recv, T_i_send, T_i_recv);

The function process2 can return an error value in case the decryption of the

payload fails. In this case the execution does not go beyond line 5. If decryption was

successful, event rcvd2 is issued. Its �rst parameter is a boolean that indicates if

the initiator is talking to the honest responder in this session. In case it is not the

honest responder, we do not want to prove a correspondence for rcvd2 later. The

other arguments are all non-constant variables of protocol messages one and two,

as well as the derived transport data keys.

The initiator now proceeds to prepare the key con�rmation message by calling the

function prepare3:

1 let (continue3: bool, ciphertext_keyconfirmation: bitstring, ←↩

plaintext_keyconfirmation: bitstring) =

2 prepare3(CLEAN, secret_bit_I, plaintext_0, plaintext_1, (←↩

is_initiator, i_N_init_parties), T_i_send) in

3 if continue3 then

4

5 event sent3(if S_X_pub = S_r_pub then true else false, E_i_pub_foo,←↩

static_i_enc, S_i_pub, timestamp_i_enc, timestamp_i, ←↩

E_r_pub_recv, empty_bitstring_r_enc_recv, T_i_send, T_i_recv, ←↩

ciphertext_keyconfirmation, plaintext_keyconfirmation);

6

7 event initiator_keys(I_i, E_i_pub_foo, static_i_enc, ←↩

timestamp_i_enc, mac1_i, mac2_i, I_r_recv, E_r_pub_recv, ←↩

empty_bitstring_r_enc_recv, mac1_r_recv, mac2_r_recv, T_i_send,←↩

T_i_recv, S_i_pub, S_X_pub);

8

9 out(c_keyconfirm_send, (msg_type_data, reserved, I_r_recv, ←↩

counter_0, ciphertext_keyconfirmation));

The placeholder CLEAN stands for the cleanness predicate of the session that we will

describe later. As described earlier, prepare3 (and prepare_msg) will only encrypt

depending on the secret bit, if the session is clean. If prepare3 does return a cipher-

text, the oracle continues, and issues two events before it outputs the message on a

channel. The �rst event is sent3, which stands for the fact that the initiator sent

the key con�rmation message. As rcvd2, it takes as arguments all non-constant

values that are part of the three protocol messages involved so far, the plaintext

values belonging to ciphertexts sent, and the transport data keys. The �rst value

72

4.3. A Security Model for WireGuard in CryptoVerif

indicates if it is a session between initiator and responder, because for other sessions

we do not want to prove authenticity properties. The event initiator_keys takes

as parameters all non-constant values sent during the �rst two protocol messages,

and additionally the transport data keys and the long-term public keys. This will be

used to prove correctness and other correspondences.

• When the attacker asks the initator to send a transport data message, it prepares in

using prepare_msg, using the same cleanness predicate as before:

1 ! i_Nis<=N_init_send

2 in(c_N_init_send_config, (plaintext_data_0: bitstring, ←↩

plaintext_data_1: bitstring, nonce: nonce_t));

3 let (continue_data_send: bool, ciphertext_data_send: bitstring, ←↩

plaintext_data_send: bitstring) = prepare_msg((is_initiator, ←↩

i_N_init_parties), secret_bit_I, plaintext_data_0, ←↩

plaintext_data_1, nonce, CLEAN, T_i_send) in

4 if continue_data_send then

5 event sent4_initiator(if S_X_pub = S_r_pub then true else false, ←↩

E_i_pub_foo, static_i_enc, S_i_pub, timestamp_i_enc, ←↩

timestamp_i, E_r_pub_recv, empty_bitstring_r_enc_recv, ←↩

T_i_send, T_i_recv, ciphertext_keyconfirmation, ←↩

plaintext_keyconfirmation, nonce_to_counter(nonce), ←↩

ciphertext_data_send, plaintext_data_send);

6 out(c_N_init_send, (msg_type_data, reserved, I_r_recv, ←↩

nonce_to_counter(nonce), ciphertext_data_send))

If prepare_msg does not fail, event sent4_initiator is issued with the same sort of

parameters as sent3, and the transport data message ist sent.

• When the attacker sends the initiator a transport data message, it is processed using

process_msg:

1 ! i_Nir<=N_init_recv

2 in(c_N_init_recv, (=msg_type_data, =reserved, =I_i, counter_recv:←↩

counter_t, ciphertext_data_recv: bitstring));

3 let (continue_data_recv: bool, plaintext_data_recv: bitstring) = ←↩

process_msg((is_initiator, i_N_init_parties), counter_recv, ←↩

ciphertext_data_recv, T_i_recv) in

4 if continue_data_recv then

5 event rcvd4_initiator(if S_X_pub = S_r_pub then true else false, ←↩

E_i_pub_foo, static_i_enc, S_i_pub, timestamp_i_enc, ←↩

timestamp_i, E_r_pub_recv, empty_bitstring_r_enc_recv, ←↩

T_i_send, T_i_recv, ciphertext_keyconfirmation, ←↩

plaintext_keyconfirmation, counter_recv, ciphertext_data_recv←↩

, plaintext_data_recv)

If decryption is successful, event rcvd4_initiator is issued.

73

4. Proofs of Cryptographic Properties with CryptoVerif

The Responder’s Session Oracles.

• Upon reception of a �rst protocol message, the responder processes it using the

process1 function.

1 in(c_init2resp_recv, (=msg_type_init2resp, =reserved, I_i_recv: ←↩

session_index_t, E_i_pub_recv: G_t, static_i_enc_recv: bitstring,←↩

timestamp_i_enc_recv: bitstring, mac1_i_recv: mac_t, mac2_i_recv←↩

: mac_t));

2

3 let (continue1: bool, es_r: G_t, ss_r: G_t, S_i_pub_recv: G_t, H_r4←↩

: hashoutput_t, timestamp_i_recv: timestamp_t) =

4 process1(

5 key_hash, key_rom1, key_rom2, S_r_priv, S_r_pub,

6 I_i_recv, E_i_pub_recv, static_i_enc_recv, timestamp_i_enc_recv←↩

,

7 mac1_i_recv, mac2_i_recv) in

8 if continue1 then

9

10 get rcvd_timestamps(=S_r_pub, =S_i_pub_recv, =timestamp_i_recv) in ←↩

yield else

11 insert rcvd_timestamps(S_r_pub, S_i_pub_recv, timestamp_i_recv);

12

13 event rcvd1(if S_i_pub_recv = S_i_pub then true else false, ←↩

E_i_pub_recv, static_i_enc_recv, S_i_pub_recv, ←↩

timestamp_i_enc_recv, timestamp_i_recv);

If the processing was successful, that is the decryption of the timestamp, the process

continues. If the timestamp has been seen before, the process yields, otherwise it

stores the timestamp in the table and continues by issuing event rcvd1.

Then, for preparation of the second protocol message, prepare2 is used. If this is

successful, the event sent2 is issued and the second protocol message is output on a

channel.

1 let (continue2: bool, I_r: session_index_t, E_r_priv: Z_t, ←↩

E_r_pub_foo: G_t, T_r_recv: key_t, T_r_send: key_t, ←↩

empty_bitstring_enc: bitstring, mac1_r: mac_t, mac2_r: mac_t) =

2 prepare2(key_hash, key_rom3,

3 I_i_recv, S_i_pub_recv, E_i_pub_recv, H_r4, es_r, ss_r, Q) in

4 if continue2 then

5 event sent2(E_i_pub_recv, static_i_enc_recv, S_i_pub_recv, ←↩

timestamp_i_enc_recv, timestamp_i_recv, E_r_pub_foo, ←↩

empty_bitstring_enc, T_r_recv, T_r_send);

6 out(c_resp2init_send, (ifdef(‘E_r_compr’,‘E_r_priv’,‘dummy_z’), (←↩

msg_type_resp2init, reserved, I_r, I_i_recv, E_r_pub_foo, ←↩

empty_bitstring_enc, mac1_r, mac2_r)));

Again, we have the optional static compromise of the ephemeral key along with the

protocol message.

74

4.3. A Security Model for WireGuard in CryptoVerif

• Upon reception of the key con�rmation message, it is processed using process3.

1 in(c_keyconfirm_recv, (=msg_type_data, =reserved, =I_r, =counter_0,←↩

ciphertext_keyconfirmation_recv: bitstring));

2 let (continue3: bool, plaintext_keyconfirmation_recv: bitstring) =

3 process3(ciphertext_keyconfirmation_recv, T_r_recv, (is_responder←↩

, i_N_resp_parties)) in

4 if continue3 then

5

6 event rcvd3(if S_i_pub_recv = S_i_pub then true else false, ←↩

E_i_pub_recv, static_i_enc_recv, S_i_pub_recv, ←↩

timestamp_i_enc_recv, timestamp_i_recv, E_r_pub_foo, ←↩

empty_bitstring_enc, T_r_recv, T_r_send, ←↩

ciphertext_keyconfirmation_recv, plaintext_keyconfirmation_recv←↩

);

7 event responder_keys(I_i_recv, E_i_pub_recv, static_i_enc_recv, ←↩

timestamp_i_enc_recv, mac1_i_recv, mac2_i_recv, I_r, ←↩

E_r_pub_foo, empty_bitstring_enc, mac1_r, mac2_r, T_r_recv, ←↩

T_r_send, S_i_pub_recv, S_r_pub);

8

9 out(c_wait_before_2nd_part, ());

If the message could be decrypted, event rcvd3 is issued. Also, because the re-

sponder is now convinced that the initiator has derived the same keys, the event

responder_keys is issued.

• The oracles for transport data messages are the same as for the initiator, just using

the appropriate keys, and with adapted names for events. Thus we do not repeat the

de�nition.

4.3.4. Trivial Attacks, Session Cleanness, and Partnering Definition

In eCK- and ACCE-like models, the attacker wins if it can, for a test session it choses,

distinguish a random key from a real key, or the ciphertext of two di�erent plaintexts.

However, the test session must be “clean”. If it is compromised in a way that would break

security trivially, the attack does not count. The predicate clean also does not only concern

the test session itself, but the partner session which was the communication partner in

the protocol execution.

Test Session. In our model, all clean sessions are test sessions, and not just one chosen by

the attacker. We model this by playing a left-or-right message indistinguishability game

dependent on the secret bit in every session that is clean.

Session Cleanness. In WireGuard, four Di�e-Hellman operations and the pre-shared

key contribute to the session key. If the pre-shared key is used and not compromised,

the protocol is secure. If it is not used or compromised, security is based on the four

Di�e-Hellman operations. If one of them cannot be computed by the attacker, then the

75

4. Proofs of Cryptographic Properties with CryptoVerif

transport data keys are secure by Gap Di�e-Hellman. This means all combinations of

compromises are �ne but those where both keys on one side are compromised. We now

describe how we model this, separately for each model �le into which we split up the

proof.

• Dynamic Compromises of Long-Term Keys, Ephemerals Are Not Compro-
mised. Suppose we are on the side of the initiator. Its long-term key could possibly

be compromised, but the ephemeral is not. Thus on the initiator’s side, there is no

problem. If the responder’s long-term key is compromised, the session is still clean

if the ephemeral is not compromised. Our assumption in this part of the proof is

that ephemerals cannot be compromised, but if the responder’s long-term key is

compromised, the attacker can impersonate him. The initiator could thus talk to an

attacker-led session. However, if the initiator is really talking to the responder, this

session is clean. We can query this by a find condition on E
pub
r , see line 2:

1 if defined(S_r_is_corrupted) then (

2 find j <= N_resp_parties suchthat defined(E_r_pub[j]) && E_r_pub_recv←↩

= E_r_pub[j] then

3 S_X_pub = S_r_pub

4 else

5 false

6) else (

7 S_X_pub = S_r_pub

8)

If there is a responder session that generated this ephemeral, we consider the session

to be clean and return S
pub
X = S

pub
r , which is the necessary condition for the message

indistinguishability game to be played.

The cleanness predicate on the side of the responder is determined equivalently.

• E
priv
i or Eprivr compromised. In these models we hardcode the compromise of one

of the ephemerals (for all sessions). If the ephemeral key of one side is compromised,

its long-term key cannot be compromised. In these models we thus do not provide

the respective oracle for dynamic compromise of the long-term key. The cleanness

predicate is calculated in the same way as before: If the other side’s long-term key is

not compromised, the session is clean if the honest parties are talking to each other.

If it is compromised, but the session is actually with the other side and not with the

attacker, the session is clean if the honest parties are talking to each other.

• Both Ephemerals Compromised. In this case there is no dynamic compromise

of long-term keys. All sessions are clean where the honest parties are talking to

each other.

76

4.3. A Security Model for WireGuard in CryptoVerif

4.3.5. Security Queries

Secrecy. All secrecy properties are queried via

1 query secret secret_bit.

We described in Section 4.2.2 how CryptoVerif checks those. This includes the following

properties:

• Message Secrecy in general (in sessions without compromises).

• Forward Secrecy, because the model allows long-term keys to be compromised after

a session.

• Message Secrecy if the long-term keys are already compromised but the parties can

rely on their not-compromised ephemerals.

Correctness. We prove that, if two parties have the same view on a protocol transcript,

they derive the same transport data keys. In our case, all variables used in queries are

universally quanti�ed.

1 event(responder_keys(

2 I_i, E_i_pub, static_i_enc, timestamp_i_enc, mac1_i, mac2_i,

3 I_r, E_r_pub, empty_bitstring_enc, mac1_r, mac2_r,

4 T_r_recv, T_r_send, S_i_pub, S_r_pub))

5 &&

6 event(initiator_keys(

7 I_i, E_i_pub, static_i_enc, timestamp_i_enc, mac1_i, mac2_i,

8 I_r, E_r_pub, empty_bitstring_enc, mac1_r, mac2_r,

9 T_i_send, T_i_recv, S_i_pub, S_r_pub))

10 ==> (T_i_send = T_r_recv && T_i_recv = T_r_send).

These events are issued after the derivation of the transport data keys on both sides.

Formally, we prove with this query that if an initiator and an responder have the same

protocol transcript (that is, the values that they sent respectively received for each protocol

message) and derived possibly di�erent transport data keys, the transport data keys are

actually the same. This means the protocol works.

UnknownKey-ShareAttack. We prove resistance against unilateral and bilateral unknown

key-share attacks, by proving that if two parties have derived the same transport data

keys, they have the same view on the keys used for the derivation:

1 event(responder_keys(

2 I_i_recv, E_i_pub_recv, static_i_enc_recv, timestamp_i_enc_recv, ←↩

mac1_i_recv, mac2_i_recv,

3 I_r, E_r_pub, empty_bitstring_enc, mac1_r, mac2_r,

4 T_i_send, T_i_recv, S_i_pub_recv, S_r_pub))

5 &&

6 event(initiator_keys(

7 I_i, E_i_pub, static_i_enc, timestamp_i_enc, mac1_i, mac2_i,

77

4. Proofs of Cryptographic Properties with CryptoVerif

8 I_r_recv, E_r_pub_recv, empty_bitstring_enc_recv, mac1_r_recv, ←↩

mac2_r_recv,

9 T_i_send, T_i_recv, S_i_pub, S_r_pub_recv))

10 ==> (E_i_pub = E_i_pub_recv && E_r_pub = E_r_pub_recv && S_i_pub = ←↩

S_i_pub_recv && S_r_pub = S_r_pub_recv).

Formally, if an initiator and a responder derive the same transport data keys, with possibly

di�erent keys E
pub
i ,E

pub
i,recv , E

pub
r ,E

pub
r ,recv , S

pub
i , S

pub
i,recv , S

pub
r , S

pub
r ,recv , the respective keys are

actually the same.

Authentication of the Second Protocol Message. We prove that if the initiator thinks to

have received a second protocol message from the responder, then the responder actually

sent this message. More strongly, we prove that each reception of a second protocol

message by the initiator implies that the responder has a distinct partner session and

sent the second protocol message. We do so by the following correspondence query with

injective events:

1 inj-event(rcvd2(true, E_i_pub, static_i_enc, S_i_pub, timestamp_i_enc, ←↩

timestamp_i, E_r_pub, empty_bitstring_enc, T_i_send, T_i_recv)) ==>

2 inj-event(sent2(E_i_pub, static_i_enc, S_i_pub, timestamp_i_enc, ←↩

timestamp_i, E_r_pub, empty_bitstring_enc, T_i_send, T_i_recv))

3 || event(S_r_corrupted).

We recall that the �rst argument of rcvd2 is a boolean indicating if the initiator thinks

to talk to the responder. Only in this case, proving authentication is interesting. The

partner session here is a session with the same view on the protocol messages that were

sent over channels, and the respective plaintexts. Note that the implication is that either

sent2 occurred, or S_r_corrupted. If the responder’s long-term key is compromised, the

attacker can impersonate him and there is no authentication. However, this query does not

depend on the fact if the initiator’s long-term key is compromised. This means that this

authentication query includes resistance against key compromise impersonation attacks.

Authentication of the Key Confirmation Message. Equally, we prove that each reception

of a key con�rmation message implies that the initiator has a partner session that sent this

message, and distinct receptions correspond to distinct partner sessions. If the initiator’s

long-term key is compromised, then we do not prove this property. This query does not

depend on a possible compromise of the responder’s long-term key and thus includes

resistance against KCI.

1 inj-event(rcvd3(true, E_i_pub, static_i_enc, S_i_pub, timestamp_i_enc, ←↩

timestamp_i, E_r_pub, empty_bitstring_enc, T_r_recv, T_r_send, ←↩

ciphertext_keyconfirmation, plaintext_keyconfirmation)) ==>

2 inj-event(sent3(true, E_i_pub, static_i_enc, S_i_pub, timestamp_i_enc, ←↩

timestamp_i2, E_r_pub, empty_bitstring_enc, T_r_recv2, T_r_send2, ←↩

ciphertext_keyconfirmation, plaintext_keyconfirmation2))

3 || event(S_i_corrupted).

78

4.4. Description of the Proof

Authentication of Transport Data Messages. For transport data messages in both direc-

tions, we prove that if such a message is received, then there is a partner session of the

other peer that sent this message. Resistance against KCI is handled in the same way. The

CryptoVerif code looks very similar to the query for the key con�rmation, and thus we do

not include it. One di�erence is that the nonces are included in the event’s parameters.

Mutual Authentication. Looking at the authentication of the second message and au-

thentication of the key con�rmation message together, we have prove that the protocol

provides mutual authentication of initiator and responder.

No Replay of the First Protocol Message. In presence of the table of already seen times-

tamps, we can prove that the �rst protocol message cannot be replayed:

1 inj-event(rcvd1(true, E_i_pub, static_i_enc, S_i_pub, timestamp_i_enc, ←↩

timestamp_i)) ==>

2 inj-event(sent1(E_i_pub, static_i_enc, S_i_pub, timestamp_i_enc, ←↩

timestamp_i))

3 || event(S_i_corrupted) || event(S_r_corrupted).

We prove that for each received �rst protocol message for which the responder thinks it

comes from the responder, the responder has a partner session and sent the �rst protocol

message with the same contents. However, we can prove this only if neither of the two

long-term keys is compromised. If S
priv
i is compromised, the attacker can impersonate

the initiator. If S
priv
r is compromised, the attacker can impersonate the initiator to the

responder, because resistance against KCI is established only after the key con�rmation

message.

Note that neither of the correspondence queries depend on a possible corruption of the

ephemeral keys or the pre-shared key. This is clear because those are all authentication-

related properties, and authentication in this protocol is based on the long-term keys.

4.4. Description of the Proof

We guide the proofs by manually indicating the transformations to apply. This is nec-

essary because we need to disect di�erent protocol execution scenarios (honest parties

talking, honest and dishonest party talking), and especially use some transformation that

CryptoVerif does not apply automatically, like the splitting up of the result of the last

random oracle, and INT-CTXT in case of dynamic compromise. In the following, we detail

the proof steps for the most complex of the model �les, the one with possible dynamic

compromises of the honest party’s long-term keys. The proofs for the other model �les

are very similar, respectively slightly shorter, and can be found in Appendix A.1.

The proofs steps are indicated to CryptoVerif in the proof environment, usually at the

beginning of the �le, and in any case before the top-level process. At the beginning, we

introduce case distinctions on the long-term and ephemeral keys. Our (manual) proof

strategy here is to isolate the sessions between two honest parties, prove security there,

79

4. Proofs of Cryptographic Properties with CryptoVerif

and in the other cases prove that the protocol will either not complete or the games do

not use encryption dependent on the secret bit.

As a �rst step, we introduce a case distinction in the initiator process, to be able to

separately treat the case where it is talking to the honest responder or another party. This

is done by an insert statement:

1 proof {

2 success;

3 insert 38 "if S_X_pub = S_r_pub then";

4 SArename E_i_pub_2;

The number 38 here is a so called “occurrence” number. CryptoVerif numbers all terms

starting from the beginning of the game, and the number in the insert statement indicates

at which occurrence number the term should be inserted. The term that resided at this

occurrence number before will then be placed after the newly inserted statement. Inserting

an if statement will duplicate all code below for both branches. We use the SArename

command to introduce di�erent names for the initiator’s ephemeral public key for the two

cases. We did not comment the �rst line in the proof environment so far: The command

success instructs CryptoVerif to check if the queries are satis�ed. Directly at the beginning,

the correspondence for correctness of the protocol is already proved. Equally to above, we

introduce a case distinction on the responder’s side, branching on the long-term public

key it is talking to:

5 insert 2791 "if S_i_pub_recv_2 = S_i_pub_1 then";

We also distinguish the di�erent possible cases of used ephemeral keys. In the responder

process, we �nd the initiator session that generated an honest ephemeral key, in the belief

of creating the protocol message for the honest responder long-term key.

6 (* just after the first in at the responder’s side. *)

7 insert 2726 "find i <= N_init_parties suchthat defined(E_i_pub_4[i]) && ←↩

E_i_pub_recv_2 = E_i_pub_4[i] then";

This case distinction is inserted just after the �rst protocol message is received. E_i_pub_4

is the variable name of the initiator’s ephemeral key, created when preparing a message

to the honest responder long-term key. Similarily, on the initiator’s side, we �nd the

responder session that created their ephemeral key for a message to the honest initiator

long-term key. This case distinction needs to be made after the initiator receives the

responder’s ephemeral key with the second protocol message. In the initiator process,

there are two places where this can happen because of the above case distinction, (1) when

talking to the honest responder long-term key, (2) when talking to another long-term key.

8 insert 1655 "find j <= N_resp_parties suchthat defined(E_r_pub[j]) && ←↩

E_r_pub_recv_1 = E_r_pub[j] then";

9 insert 179 "find j <= N_resp_parties suchthat defined(E_r_pub[j]) && ←↩

E_r_pub_recv_1 = E_r_pub[j] then";

Now we start the cryptographic transformations. We �rst transform the calls to random

oracles to �nd constructs.

10 crypto rom(rom3_intermediate);

80

4.4. Description of the Proof

11 crypto rom(rom2);

12 crypto rom(rom1);

Then we apply the Gap Di�e-Hellman assumption on the honest private keys.

13 crypto gdh(exp) S_r_priv_1 E_i_priv_5 S_i_priv_2 E_r_priv_2;

This will eliminate a lot of branches because we proved that the attacker cannot know

certain results of Di�e-Hellman operations. Indeed, after splitting the result of the third

random oracle into the individual keys, CryptoVerif is able to prove the �rst correspondence

property: resistance against unknown key-share attacks.

14 crypto split_hashoutput *;

15 success; (* unknown key-share *)

As a next step, we let CryptoVerif apply INT-CTXT at all places where it can.

16 crypto int_ctxt(enc) *;

17 success; (* some nonce reuse, correctness *)

After this step, it is proven for some nonce reuse failure events that they do not occur.

Next, we let CryptoVerif apply IND-CPA where it can.

1 crypto ind_cpa(enc) *;

2 success; (* more nonce reuse proved *)

If there were no dynamic compromises, the security properties could now all be proved.

Indeed, in the model �le where the pre-shared key is used and all Di�e-Hellman keys are

statically compromised, the proof succeeds here.

In case of possible dynamic compromises, more manual transformations need to be

applied. Suppose the initiator talks to the honest responder long-term key, and the latter

is not compromised. The ephemeral that the initiator received with the second protocol

message however is not an honest ephemeral (but was replaced by some other public

key by the attacker). With the following application of INT-CTXT we establish that the

attacker cannot forge the ciphertext in the second protocol message: It might have chosen

an ephemeral that it has the private key for, but it does not know the private key of the

honest responder long-term key.

18 crypto int_ctxt_corrupt(enc) k_19;

19 success;

At this stage, the two correspondences on protocol messages received by the initiator

can be proved: The initiator can authenticate the second protocol message sent by the

responder, and the initiator can authenticate transport data messages sent by the responder.

An analoguous case needs to be treated on the responder’s side. Suppose it talks to the

honest initiator long-term key, and the latter is not compromised. The ephemeral received

with the �rst protocol message however was not honest. Then the attacker cannot forge

the ciphertext of the key con�rmation message.

20 crypto int_ctxt_corrupt(enc) T_i_send_12;

21 success;

81

4. Proofs of Cryptographic Properties with CryptoVerif

At this stage, the correspondences on protocol messages received by the responder can

be proved: The responder can authenticate transport data messages sent by the initiator,

and the responder can authenticate the third protocol message sent by the initiator (key

con�rmation).

The only query left is the secrecy of the secret bit. It is proved after some applications

of IND-CPA that were blocked by the dynamic compromises.

22 crypto ind_cpa(enc) *;

23 success; (* secrecy of secret_bit (message indistinguishability) *)

The proof concludes after 204 game transformations in game 205. This might seem a lot,

but counts all syntactical transformations.

4.5. Results and Discussion of the Model

We prove all properties described in Section 4.3.5, and do so by separating the proof into

di�erent compromise scenarios. For every scenario, we prepare a separate model �le and

run it in CryptoVerif.

1. Dynamic compromises of long-term keys, ephemerals are not compromised. The

pre-shared key might be used or not, and dynamic compromise of it is possible.

2. E
priv
i statically compromised, and possible dynamic compromise of S

priv
r . The pre-

shared key might be used or not, and dynamic compromise of it is possible.

3. E
priv
r statically compromised, and possible dynamic compromise of S

priv
i . The pre-

shared key might be used or not, and dynamic compromise of it is possible.

4. Both E
priv
i and E

priv
r are statically compromised. The pre-shared key might be used

or not, and dynamic compromise of it is possible.

5. All Di�e-Hellman keys are statically compromised, the pre-shared key is used and

not compromised.

6. We have one additional model �le in which we only prove the correspondence

property on the �rst protocol message in the absence of long-term key compromise.

Including this query in the model �le of the �rst scenario led to too many case

distinctions and CryptoVerif did not terminate.

We have proofs for all these scenarios (but the one with static compromise of both

ephemerals, which we could not �nish in time). This means that asymptotic security in the

computational model is established in these cases. For the �rst scenario, we will present

the advantage of the attacker to break the secrecy property. This property is proved in the

last game, and thus the advantage is larger than for the other properties, and we can use it

to bound the overall advantage for this scenario. A bound for the total advantage of the

attacker to break any of the security properties of the complete WireGuard handshake can

be obtained by the maximum of the advantages from scenario 1 to 5: A session is in one of

the possible compromise scenarios, and the model �les treat disjoint compromise scenarios.

82

4.5. Results and Discussion of the Model

The advantage of the attacker to break the no-replay property on the �rst message does not

have to be consider as part of the advantage to break the whole handshake. We consider it

as an additional property we proved.

In the following advantage formula, we use the advantages de�ned in Section 2.1.

The variables ni and nr denote the number of initiator and responder session respectively,

nrom1,nrom2,nrom3 are the number of calls the attacker makes to the random oracles, |Z_t|

is the size of the space of exponents for the used Di�e-Hellman group, and |psk_t| is the

size of the pre-shared key space. The advantage of the attacker to calculate the secret bit

in the �rst compromise scenario is

(14nr + 10ni)Advint−ctxt

AEAD,A(n) + 24Advcoll−res

HASH,A(n) + 12nrAdv
ind−cpa

AEAD,A(n)

+(4nr + 6nrom1ni + 12nrom2ni + 2nrom3nr + 50nini + 16nrnr + 2062nrni + 50ni)/|Z_t|

+(4nrom1 + 8nrom2 + 30nrom3 + 48nrnrom3 + 2nrnrom1 + 18nrnrom2) · Adv
gdh

G,A
(n)

We simpli�ed the formula given by CryptoVerif, mainly by removing the parameters of

the advantages to break a cryptographic primitive. CryptoVerif indicates them dependent

on the time and parameter sizes (additionally to the implicit dependency on the security

parameter). We observe that the advantage formula is more detailed as the formula given

in the theorem of [31]: Our formula includes the number of calls to the random oracles

(and potentially the execution time of the attacker, and parameters of the primitives).

Also, our formula considers collisions on the private Di�e-Hellman exponents. However,

the constants are generally larger. This is because CryptoVerif applies the cryptographic

transformations for a lot of subcases, without considering which of them are disjoint

subcases. By taking the maximum of the attacker’s advantage in disjoint subcases, a lower

bound can be computed.

The advantages to break the secrecy of the secret bit in the other compromise scenarios

is given in Appendix A.2. For a complete advantage formula, the probabilities from the

indi�erentiability proof, see Section 4.3.1.1, need to be added to the result from CryptoVerif.

Discussion of the Model. We comment brie�y on some decisions made for our model.

We remind that we model two honest parties instead of a variable number as Dowling

and Paterson do in their analysis. Thus, this parameter, nP in their case, does not appear

in our formulas. This does not degrade our analysis, because our model includes that the

two honest parties can execute the protocol with dishonest parties (that is, the attacker):

The attacker can explicitely set up an initiator process to start a protocol session to a

long-term key that is not the honest responder’s key. Also, the attacker can send a �rst

protocol message to the responder, using any long-term public key it generated. Thus, as

do Dowling and Paterson, we also include that the honest party’s long-term keys are used

in sessions with dishonest parties (which means that there is no partner session).

In our model, the two honest long-term keys have �xed roles: Si is only used by a party

initiating sessions, and Sr is only used by a party responding to sessions. Intuitively, one

might think that this does re�ect VPN scenarios, where it is usually a VPN client that

initiates a secure connection to a VPN server. However this is not true in WireGuard: In

some circumstances, it might be the responder who initiates a new handshake during a

83

4. Proofs of Cryptographic Properties with CryptoVerif

longer run VPN session. Changing our model to allow the long-term keys to be used for

both types of sessions would be straightforward: We could let the attacker give a bit to

the initiator process to de�ne which of the two honest private keys it should use. For the

responder’s side, we would call the responder process twice in the top-level process, once

with each long-term key pair. However, the proof would need more e�ort. We would

need to deal with a party talking to itself, that is if the attacker instructs the initiator

to use the same key for itself and the party it’s talking to. Cryptographically, we would

need to introduce the square Di�e-Hellman assumption. However, the size of the games

would at least double because of the case distinctions, and we expect that this exceeds the

capabilities of CryptoVerif on current computers.

84

5. Conclusion and Future Work

We presented the �rst mechanised proof of the WireGuard protocol in the computational

model. In Chapter 2, we de�ned the cryptographic primitives used in the protocol, the

cryptographic assumptions used in our proof, and the notion of authenticated key ex-

change including its security properties. In Chapter 3, we brie�y described the Noise

Protocol Framework upon which WireGuard bases its key exchange protocol, and �nally

the WireGuard protocol itself. Chapter 4 contains our contribution. We gave an intro-

duction to the game-hopping proof technique in Section 4.1 and the CryptoVerif proof

assistant, which produces proofs using this technique, in Section 4.2. We described how

we model WireGuard and the security properties we prove in Section 4.3. Our description

of the execution environment and the oracles accessible by the attacker follows how this is

usually described for eCK and ACCE models. In Section 4.4, we described the proof done

in CryptoVerif, and discussed the results in Section 4.5, indicating an asymptotic bound

of security. The security properties proved were detailed in Section 4.3.5, and we repeat

here that we proved the following properties for the WireGuard protocol: Correctness,

message secrecy, forward secrecy, mutual authentication, resistance against key compro-

mise impersonation, resistance against unknown key-share attacks, and resistance against

replay of the �rst protocol message. The latter two properties have not been considered by

Dowling and Paterson, who provided the �rst (non mechanised) computational analysis of

the WireGuard protocol [31]. Hereby, we prove all secrecy and authentication properties

WireGuard claims to guarantee.

In the spirit of the paper [19] by Cohn-Gordon et al., we want to clearly discuss the scope

of our proof, that is, what are our assumptions, and what is our trusted computing base.

We use a proof assistant, which makes our proof rely on its correctness. The correctness

of CryptoVerif’s game transformations has been proved manually. A formal link between

these proofs and the code is not established. Also, since the manual proofs have been

originally made, changes have been made to CryptoVerif’s code base. A comprehensive

test suite is used to detect regressions, containing both queries that should be and should

not be provable.

Our proof cannot make any statement about security guarantees of an actual WireGuard

implementation, and this is left for future work as automated tools for program synthesis

from formally veri�ed proofs mature.

Of course it is left to mention that we also rely on the Gap Di�e-Hellman assumption,

the security of the symmetric encryption scheme, and work in the Random Oracle model.

85

5. Conclusion and Future Work

Future Work. Future work on this topic naturally divides into three di�erent directions.

A short-term goal is to extend our proof to include more properties, like identity hiding

and session uniqueness. Those have been proven in the symbolic model with Tamarin [30].

The time frame of a master’s thesis was not su�cient to include all desired properties.

Also, it would be interesting to calculate an exact attacker advantage by instantiating our

proof’s result for WireGuard’s particular parameters.

Another short-term goal is the proof of di�erent Noise patterns. Of particular interest

would be the Noise Pipes patterns, because they are used in WhatsApp to secure client-

server communication. The model we prepared for WireGuard’s IKpsk2 is easily adaptable

to other patterns. However, we expect the proofs for each Noise patterns to require

individual, manual work, because of the detailed guidance CryptoVerif needs for case

distinctions.

A mid-term goal is to provide a veri�ed implementation of WireGuard’s protocol, which

is proven to be functionally correct (that is, follow’s the protocol’s speci�cation), to be

memory safe, and to be free of side channels. This work will be based on the HaCl* formally

veri�ed crypto library.

A long-term goal is to guarantee the cryptographic properties we proved with Cryp-

toVerif for this implementation. To establish this link, the semantics of CryptoVerif and

the F* programming language need to be formally related, such that �nally automatic code

generation from one language to the other is possible.

86

Bibliography

[1] Jean-Philippe Aumasson et al. “BLAKE2: Simpler, Smaller, Fast as MD5”. In: Applied
Cryptography and Network Security. International Conference on Applied Cryptog-

raphy and Network Security. Lecture Notes in Computer Science. Springer, Berlin,

Heidelberg, June 25, 2013, pp. 119–135. isbn: 978-3-642-38979-5 978-3-642-38980-1.

doi: 10.1007/978-3-642-38980-1_8. url: https://link.springer.com/chapter/

10.1007/978-3-642-38980-1_8 (visited on 05/07/2018) (cit. on p. 42).

[2] Gilles Barthe et al. “Computer-Aided Security Proofs for the Working Cryptogra-

pher”. In: Advances in Cryptology – CRYPTO 2011. Annual Cryptology Conference.

Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Aug. 14, 2011,

pp. 71–90. isbn: 978-3-642-22791-2 978-3-642-22792-9. doi: 10.1007/978-3-642-

22792-9_5. url: https://link.springer.com/chapter/10.1007/978-3-642-

22792-9_5 (visited on 05/12/2018) (cit. on p. 3).

[3] Gilles Barthe et al. “EasyCrypt: A Tutorial”. In: Foundations of Security Analysis and
Design VII. Ed. by Alessandro Aldini, Javier Lopez, and Fabio Martinelli. Vol. 8604.

Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2014, pp. 146–166.

url: https://doi.org/10.1007/978-3-319-10082-1_6 (cit. on pp. 3, 26).

[4] Mihir Bellare and Chanathip Namprempre. “Authenticated Encryption: Relations

among Notions and Analysis of the Generic Composition Paradigm”. In: Advances
in Cryptology — ASIACRYPT 2000. International Conference on the Theory and

Application of Cryptology and Information Security. Lecture Notes in Computer

Science. Springer, Berlin, Heidelberg, Dec. 3, 2000, pp. 531–545. isbn: 978-3-540-

41404-9 978-3-540-44448-0. doi: 10.1007/3-540-44448-3_41. url: https://link.

springer.com/chapter/10.1007/3-540-44448-3_41 (visited on 05/16/2018) (cit. on

pp. 8, 9).

[5] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm. July 14, 2007. url:

https://cseweb.ucsd.edu/~mihir/papers/oem.pdf (visited on 05/16/2018) (cit. on

pp. 8, 9).

[6] Mihir Bellare and Phillip Rogaway. Code-Based Game-Playing Proofs and the Security
of Triple Encryption. https://eprint.iacr.org/2004/331. 2004. url: https://eprint.

iacr.org/2004/331 (cit. on p. 3).

[7] Mihir Bellare and Phillip Rogaway. “The Security of Triple Encryption and a Frame-

work for Code-Based Game-Playing Proofs”. In: Advances in Cryptology – Eurocrypt
2006 Proceedings. Ed. by S. Vaudenay. Vol. 4004. Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer, May 2006, pp. 409–426 (cit. on p. 4).

87

https://doi.org/10.1007/978-3-642-38980-1_8
https://link.springer.com/chapter/10.1007/978-3-642-38980-1_8
https://link.springer.com/chapter/10.1007/978-3-642-38980-1_8
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://link.springer.com/chapter/10.1007/978-3-642-22792-9_5
https://link.springer.com/chapter/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/3-540-44448-3_41
https://link.springer.com/chapter/10.1007/3-540-44448-3_41
https://link.springer.com/chapter/10.1007/3-540-44448-3_41
https://cseweb.ucsd.edu/~mihir/papers/oem.pdf
https://eprint.iacr.org/2004/331
https://eprint.iacr.org/2004/331

Bibliography

[8] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. “Veri�ed Models and

Reference Implementations for the TLS 1.3 Standard Candidate”. In: IEEE Symposium
on Security and Privacy (S&P’17). Los Alamitos, CA: IEEE Computer Society Press,

May 2017, pp. 483–503. url: https://doi.org/10.1109/SP.2017.26 (cit. on p. 4).

[9] Karthikeyan Bhargavan and Gaëtan Leurent. “On the Practical (In-)Security of 64-Bit

Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN”. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security. CCS

’16. New York, NY, USA: ACM, 2016, pp. 456–467. isbn: 978-1-4503-4139-4. doi:

10.1145/2976749.2978423. url: http://doi.acm.org/10.1145/2976749.2978423

(visited on 05/11/2018) (cit. on p. 1).

[10] Bruno Blanchet. “A Computationally Sound Mechanized Prover for Security Pro-

tocols”. In: IEEE Symposium on Security and Privacy. May 2006, pp. 140–154. url:

https://doi.org/10.1109/TDSC.2007.1005 (cit. on p. 3).

[11] Bruno Blanchet. “Computationally Sound Mechanized Proofs of Correspondence

Assertions”. In: 20th IEEE Computer Security Foundations Symposium (CSF’07). Los

Alamitos, CA: IEEE Computer Society Press, July 2007, pp. 97–111. doi: 10.1109/

CSF.2007.16. url: https://eprint.iacr.org/2007/128 (cit. on pp. 30, 31).

[12] Bruno Blanchet. CryptoVerif: A Computationally-Sound Security Protocol Veri�er.
Nov. 20, 2017. url: CryptoVerif:%20A%20Computationally-Sound%20Security%

20Protocol%20Verifier (cit. on pp. 27, 29).

[13] Michael Burrows, Martín Abadi, and Roger Needham. “A Logic of Authentication”.

In: Proceedings of the Royal Society of London A 426.1871 (Dec. 1989), pp. 233–271.

doi: https://doi.org/10.1145/77648.77649 (cit. on p. 3).

[14] Ran Canetti, Oded Goldreich, and Shai Halevi. “The Random Oracle Methodology,

Revisited”. In: Journal of the ACM 51.4 (July 2004), pp. 557–594 (cit. on p. 10).

[15] Ran Canetti and Hugo Krawczyk. “Analysis of Key-Exchange Protocols and Their

Use for Building Secure Channels”. In: Advances in Cryptology — EUROCRYPT
2001. International Conference on the Theory and Applications of Cryptographic

Techniques. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, May 6,

2001, pp. 453–474. isbn: 978-3-540-42070-5 978-3-540-44987-4. doi: 10.1007/3-540-

44987-6_28. url: https://link.springer.com/chapter/10.1007/3-540-44987-

6_28 (visited on 05/10/2018) (cit. on p. 2).

[16] Ran Canetti and Hugo Krawczyk. “Analysis of Key-Exchange Protocols and Their

Use for Building Secure Channels”. In: Advances in Cryptology - EUROCRYPT 2001.

Ed. by Birgit P�tzmann. Vol. 2045. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer, May 2001, pp. 453–474 (cit. on p. 14).

[17] Donghoon Chang, Mridul Nandi, and Moti Yung. Indi�erentiability of the Hash
Algorithm BLAKE. 623. 2011. url: https://eprint.iacr.org/2011/623 (cit. on

p. 42).

[18] Liqun Chen and Qiang Tang. “Bilateral Unknown Key-Share Attacks in Key Agree-

ment Protocols”. In: Journal of Universal Computer Science 14.3 (Feb. 2008), pp. 416–

440 (cit. on p. 15).

88

https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1145/2976749.2978423
http://doi.acm.org/10.1145/2976749.2978423
https://doi.org/10.1109/TDSC.2007.1005
https://doi.org/10.1109/CSF.2007.16
https://doi.org/10.1109/CSF.2007.16
https://eprint.iacr.org/2007/128
CryptoVerif:%20A%20Computationally-Sound%20Security%20Protocol%20Verifier
CryptoVerif:%20A%20Computationally-Sound%20Security%20Protocol%20Verifier
https://doi.org/https://doi.org/10.1145/77648.77649
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://link.springer.com/chapter/10.1007/3-540-44987-6_28
https://link.springer.com/chapter/10.1007/3-540-44987-6_28
https://eprint.iacr.org/2011/623

[19] Katriel Cohn-Gordon and Cas Cremers. Mind the Gap: Where Provable Security and
Real-World Messaging Don’t Quite Meet. 982. 2017. url: https://eprint.iacr.org/

2017/982 (visited on 05/17/2018) (cit. on p. 85).

[20] Jean-Sébastien Coron et al. “Merkle-Damgård Revisited: How to Construct a Hash

Function”. In: Advances in Cryptology—CRYPTO 2005. Vol. 3621. Lecture Notes in

Computer Science. Berlin, Heidelberg: Springer, 2005, pp. 430–448. url: https:

//doi.org/10.1007/11535218_26 (cit. on p. 39).

[21] Cas Cremers. “Examining Indistinguishability-Based Security Models for Key Ex-

change Protocols: The Case of CK, CK-HMQV, and eCK”. In: Proceedings of the
6th ACM Symposium on Information, Computer and Communications Security. ASI-

ACCS ’11. New York, NY, USA: ACM, 2011, pp. 80–91. isbn: 978-1-4503-0564-8. doi:

10.1145/1966913.1966925. url: http://doi.acm.org/10.1145/1966913.1966925

(visited on 05/11/2018) (cit. on p. 14).

[22] Cas Cremers. “Key Exchange in IPsec Revisited: Formal Analysis of IKEv1 and

IKEv2”. In: 16th European Conference on Research in Computer Security (ESORICS’11).
Ed. by Vijay Atluri and Claudia Diaz. Vol. 6879. Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer, Sept. 2011, pp. 315–334 (cit. on p. 1).

[23] Cas Cremers and Michèle Feltz. “Beyond eCK: Perfect Forward Secrecy under Actor

Compromise and Ephemeral-Key Reveal”. In: Designs, Codes and Cryptography 74.1

(Jan. 1, 2015), pp. 183–218. issn: 0925-1022, 1573-7586. doi: 10.1007/s10623-013-

9852-1. url: https://link.springer.com/article/10.1007/s10623-013-9852-1

(visited on 05/10/2018) (cit. on pp. 2, 14).

[24] W. Di�e and M. Hellman. “New Directions in Cryptography”. In: IEEE Transactions
on Information Theory IT-22.6 (Nov. 1976), pp. 644–654 (cit. on p. 10).

[25] Yevgeniy Dodis et al. “To Hash or Not to Hash Again? (In)Di�erentiability Results

for $$H2̂$$ and HMAC”. In: Advances in Cryptology – CRYPTO 2012. Lecture Notes

in Computer Science. Springer, Berlin, Heidelberg, 2012, pp. 348–366. isbn: 978-

3-642-32008-8 978-3-642-32009-5. doi: 10.1007/978- 3- 642- 32009- 5_21. url:

https://link.springer.com/chapter/10.1007/978-3-642-32009-5_21 (visited

on 05/08/2018) (cit. on p. 42).

[26] Yevgeniy Dodis et al. To Hash or Not to Hash Again? (In)Di�erentiability Results for
$H2̂$ and HMAC. 382. Full version. 2013. url: https://eprint.iacr.org/2013/382

(visited on 05/09/2018) (cit. on p. 42).

[27] Danny Dolev and Andrew C. Yao. “On the Security of Public Key Protocols”. In:

IEEE Transactions on Information Theory IT-29.12 (Mar. 1983), pp. 198–208. url:

https://doi.org/10.1109/TIT.1983.1056650 (cit. on p. 2).

[28] Jason A. Donenfeld. “WireGuard: Next Generation Kernel Network Tunnel”. In:

24th Annual Network and Distributed System Security Symposium, NDSS 2017.

San Diego, California, USA, Feb. 27, 2017. doi: http://dx.doi.org/10.14722/ndss.

2017.23160 (cit. on p. 1).

89

https://eprint.iacr.org/2017/982
https://eprint.iacr.org/2017/982
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://doi.org/10.1145/1966913.1966925
http://doi.acm.org/10.1145/1966913.1966925
https://doi.org/10.1007/s10623-013-9852-1
https://doi.org/10.1007/s10623-013-9852-1
https://link.springer.com/article/10.1007/s10623-013-9852-1
https://doi.org/10.1007/978-3-642-32009-5_21
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_21
https://eprint.iacr.org/2013/382
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/http://dx.doi.org/10.14722/ndss.2017.23160
https://doi.org/http://dx.doi.org/10.14722/ndss.2017.23160

Bibliography

[29] Jason A. Donenfeld. WireGuard: Next Generation Kernel Network Tunnel. Whitepaper.

May 9, 2018. url: https://www.wireguard.com/papers/wireguard.pdf (visited on

05/10/2018) (cit. on pp. 1, 19).

[30] Jason A. Donenfeld and Kevin Milner. Formal Veri�cation of the WireGuard Protocol.
Jan. 21, 2018. url: https://www.wireguard.com/papers/wireguard- formal-

verification.pdf (visited on 05/10/2018) (cit. on pp. 2, 86).

[31] Benjamin Dowling and Kenneth G. Paterson. A Cryptographic Analysis of the Wire-
Guard Protocol. 080. 2018. url: https://eprint.iacr.org/2018/080 (visited on

05/08/2018) (cit. on pp. 2, 3, 83, 85).

[32] Niels Ferguson and Bruce Schneier. A Cryptographic Evaluation of IPsec. Counter-

pane Internet Security, Inc., 1999. url: https://www.schneier.com/academic/

paperfiles/paper-ipsec.pdf (cit. on p. 1).

[33] Sha� Goldwasser and Silvio Micali. “Probabilistic Encryption”. In: Journal of Com-
puter and System Sciences 28 (1984), pp. 270–299 (cit. on p. 2).

[34] Thomas C. Hales. The NSA Back Door to NIST. Volume 61, Number 2. 2014, pp. 190–

192. url: http://www.ams.org/notices/201402/rnoti-p190.pdf (cit. on p. 3).

[35] Shai Halevi. A Plausible Approach to Computer-Aided Cryptographic Proofs. 181. 2005.

url: https://eprint.iacr.org/2005/181 (visited on 05/12/2018) (cit. on p. 4).

[36] Tibor Jager et al. “On the Security of TLS-DHE in the Standard Model”. In: Advances
in Cryptology – CRYPTO 2012. Lecture Notes in Computer Science. Springer, Berlin,

Heidelberg, 2012, pp. 273–293. isbn: 978-3-642-32008-8 978-3-642-32009-5. doi:

10.1007/978-3-642-32009-5_17. url: https://link.springer.com/chapter/10.

1007/978-3-642-32009-5_17 (visited on 05/09/2018) (cit. on p. 3).

[37] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second
Edition. 2nd. Chapman & Hall/CRC, 2014. isbn: 978-1-4665-7026-9 (cit. on p. 5).

[38] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. “Automated Veri-

�cation for Secure Messaging Protocols and Their Implementations: A Symbolic

and Computational Approach”. In: 2nd IEEE European Symposium on Security and
Privacy (EuroS&P’17). Los Alamitos, CA: IEEE Computer Society Press, Apr. 2017,

pp. 435–450 (cit. on p. 4).

[39] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. “Automated Veri-

�cation for Secure Messaging Protocols and Their Implementations: A Symbolic

and Computational Approach”. In: 2017 IEEE European Symposium on Security
and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017. 2017, pp. 435–450. doi:

10.1109/EuroSP.2017.38. url: https://doi.org/10.1109/EuroSP.2017.38 (cit. on

pp. 39, 40, 48, 54).

[40] Hugo Krawczyk. “Cryptographic Extraction and Key Derivation: The HKDF Scheme”.

In: Advances in Cryptology – CRYPTO 2010. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2010, pp. 631–648. isbn: 978-3-642-14623-7. url: https://doi.org/10.

1007/978-3-642-14623-7_34 (cit. on pp. 8, 42).

90

https://www.wireguard.com/papers/wireguard.pdf
https://www.wireguard.com/papers/wireguard-formal-verification.pdf
https://www.wireguard.com/papers/wireguard-formal-verification.pdf
https://eprint.iacr.org/2018/080
https://www.schneier.com/academic/paperfiles/paper-ipsec.pdf
https://www.schneier.com/academic/paperfiles/paper-ipsec.pdf
http://www.ams.org/notices/201402/rnoti-p190.pdf
https://eprint.iacr.org/2005/181
https://doi.org/10.1007/978-3-642-32009-5_17
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_17
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_17
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-14623-7_34

[41] Hugo Krawczyk. “HMQV: A High-Performance Secure Di�e-Hellman Protocol”.

In: Advances in Cryptology – CRYPTO 2005. Ed. by Victor Shoup. Vol. 3621. Lecture

Notes in Computer Science. Berlin, Heidelberg: Springer, Aug. 2005, pp. 546–566.

doi: 10.1007/11535218_33. url: https://link.springer.com/chapter/10.1007/

11535218_33 (cit. on p. 15).

[42] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. “Stronger Security of Authen-

ticated Key Exchange”. In: Provable Security. International Conference on Provable

Security. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Nov. 1,

2007, pp. 1–16. isbn: 978-3-540-75669-9 978-3-540-75670-5. doi: 10.1007/978-3-

540-75670-5_1. url: https://link.springer.com/chapter/10.1007/978-3-540-

75670-5_1 (visited on 05/10/2018) (cit. on pp. 2, 14).

[43] Adam Langley and Yoav Nir. “ChaCha20 and Poly1305 for IETF Protocols”. May

2015. url: https://tools.ietf.org/html/rfc7539 (cit. on p. 20).

[44] Gavin Lowe. “An Attack on the Needham-Schroeder Public-Key Authentication

Protocol”. In: Information Processing Letters 56.3 (Nov. 10, 1995), pp. 131–133. issn:

0020-0190. doi: 10.1016/0020-0190(95)00144-2. url: http://www.sciencedirect.

com/science/article/pii/0020019095001442 (visited on 05/11/2018) (cit. on p. 3).

[45] Gavin Lowe. “Breaking and Fixing the Needham-Schroeder Public-Key Protocol

Using FDR”. In: Tools and Algorithms for the Construction and Analysis of Systems.
International Workshop on Tools and Algorithms for the Construction and Analysis

of Systems. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Mar. 27,

1996, pp. 147–166. isbn: 978-3-540-61042-7 978-3-540-49874-2. doi: 10.1007/3-540-

61042-1_43. url: https://link.springer.com/chapter/10.1007/3-540-61042-

1_43 (visited on 05/11/2018) (cit. on p. 3).

[46] Atul Luykx, Bart Mennink, and Samuel Neves. “Security Analysis of BLAKE2’s

Modes of Operation”. In: IACR Transactions on Symmetric Cryptology 2016.1 (Dec. 1,

2016), pp. 158–176. issn: 2519-173X. doi: 10.13154/tosc.v2016.i1.158- 176.

url: https://tosc.iacr.org/index.php/ToSC/article/view/540 (visited on

05/07/2018) (cit. on p. 42).

[47] Roger M. Needham and Michael D. Schroeder. “Using Encryption for Authentication

in Large Networks of Computers”. In: Commun. ACM 21.12 (Dec. 1978), pp. 993–999.

issn: 0001-0782. doi: 10.1145/359657.359659. url: http://doi.acm.org/10.1145/

359657.359659 (visited on 05/11/2018) (cit. on p. 3).

[48] Tatsuaki Okamoto and David Pointcheval. “The Gap-Problems: A New Class of

Problems for the Security of Cryptographic Schemes”. In: Public Key Cryptography.

International Workshop on Public Key Cryptography. Lecture Notes in Computer

Science. Springer, Berlin, Heidelberg, Feb. 13, 2001, pp. 104–118. isbn: 978-3-540-

41658-6 978-3-540-44586-9. doi: 10.1007/3-540-44586-2_8. url: https://link.

springer.com/chapter/10.1007/3-540-44586-2_8 (visited on 05/15/2018) (cit. on

pp. 11, 12).

[49] Trevor Perrin. The Noise Protocol Framework. Revision: 33. Oct. 4, 2017. url: https:

//noiseprotocol.org/noise.html (visited on 05/08/2018) (cit. on pp. 1, 2, 42).

91

https://doi.org/10.1007/11535218_33
https://link.springer.com/chapter/10.1007/11535218_33
https://link.springer.com/chapter/10.1007/11535218_33
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://link.springer.com/chapter/10.1007/978-3-540-75670-5_1
https://link.springer.com/chapter/10.1007/978-3-540-75670-5_1
https://tools.ietf.org/html/rfc7539
https://doi.org/10.1016/0020-0190(95)00144-2
http://www.sciencedirect.com/science/article/pii/0020019095001442
http://www.sciencedirect.com/science/article/pii/0020019095001442
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1007/3-540-61042-1_43
https://link.springer.com/chapter/10.1007/3-540-61042-1_43
https://link.springer.com/chapter/10.1007/3-540-61042-1_43
https://doi.org/10.13154/tosc.v2016.i1.158-176
https://tosc.iacr.org/index.php/ToSC/article/view/540
https://doi.org/10.1145/359657.359659
http://doi.acm.org/10.1145/359657.359659
http://doi.acm.org/10.1145/359657.359659
https://doi.org/10.1007/3-540-44586-2_8
https://link.springer.com/chapter/10.1007/3-540-44586-2_8
https://link.springer.com/chapter/10.1007/3-540-44586-2_8
https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html

Bibliography

[50] Vasile C. Perta et al. “A Glance through the VPN Looking Glass: IPv6 Leakage and

DNS Hijacking in Commercial VPN Clients”. In: Proceedings on Privacy Enhancing
Technologies 2015.1 (Apr. 1, 2015), pp. 77–91. doi: 10.1515/popets-2015-0006. url:

https://content.sciendo.com/view/journals/popets/2015/1/article-p77.xml

(visited on 05/12/2018) (cit. on p. 1).

[51] Phillip Rogaway. “Authenticated-Encryption with Associated-Data”. In: Ninth ACM
Conference on Computer and Communications Security (CCS-9). New York, NY: ACM

Press, Nov. 2002, pp. 98–107 (cit. on p. 8).

[52] Victor Shoup. Sequences of Games: A Tool for Taming Complexity in Security Proofs.
Published: Cryptology ePrint Archive, Report 2004/332. Nov. 2004. url: https:

//eprint.iacr.org/2004/332 (cit. on pp. 3, 25, 26).

[53] WhatsApp. Connecting One Billion Users Every Day. July 26, 2017. url: https :

//blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day

(visited on 05/12/2018) (cit. on p. 2).

[54] WhatsApp. WhatsApp Encryption Overview. Technical white paper. Apr. 5, 2016.

url: https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

(cit. on p. 2).

92

https://doi.org/10.1515/popets-2015-0006
https://content.sciendo.com/view/journals/popets/2015/1/article-p77.xml
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day
https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

Acknowledgements

I am deeply thankful that I have been given the opportunity to prepare my master’s

thesis in the Prosecco research team at INRIA Paris. I have learned a lot already and I am

looking forward to my time there as PhD student. I thank my thesis advisors Karthikeyan

Bhargavan, Bruno Blanchet and Harry Halpin for accepting my application and funding my

internship. I also thank Professor Müller-Quade for accepting this internship as external

master’s thesis, and Professor Hofheinz to agree to be my second reviewer. I thank Mario

Stre�er from the crypto research group at KIT, who helped me establish the �rst contact

to the Prosecco team, and who in the following agreed to by my internal thesis advisor.

I want to also thank Je�, who I met during my studies in Rennes. He was the second person

helping me and encouraging me to get in touch with the Prosecco team. I thank Harry

Halpin for the spontaneous meeting on that Sunday in September, on my journey through

Paris. I thank Bruno Blanchet, with whom I mainly worked during my internship: Thanks

for teaching me CryptoVerif, helping me developing the understanding of protocols I now

have, and asking me if I want to stay for a PhD. I thank Karthikeyan Bhargavan who

helped made me not forget the bigger picture my research is embedded into. I thank Harry

Halpin for pointing me to the right literature to help me understand what I am doing, and

for pushing me through the �nal days of my master’s thesis. During my internship, I was

given the opportunity to attend the Real World Crypto conference, and a European project

meeting in Lausanne. Also, I could meet Trevor Perrin, the author of the Noise Protocol

Framework, and Jason A. Donenfeld, the author of WireGuard. This has contributed a

lot to my time in Prosecco being a very satisfying research experience. I am grateful to

everyone who participated in it. I thank everybody in the Prosecco team for supporting

me during my internship, especially my o�ce mates who motivated me to arrive earlier

in the morning, our team assistant who manages all the necessary bureaucracy, those

who supported me during the �rst steps I took in F*, K. who introduced the Tuesday cake

tradition, and M. and N. for their (actually not) stupid jokes. I thank Nadim for his very

useful constructive feedback on my work, and exciting discussions about Noise.

I see this master internship as the summit of the double degree in cryptography that

I pursued for my master’s, studying one year in Rennes, and one year in Karlsruhe. I am

thankful to everyone who made this programme possible: Willi Geiselmann, Melina

Metzig-Lotter, Ioana Gheta, Susanne Kaliwe, Felix Ulmer, Sylvain Duquesne, and �nally J.

and A. who participated in this programme at the same time from the German side.

I thank my parents for their unconditional love and support during my whole life.

I thank my grandparents, who supported me without hesitation in all of my trips to foreign

countries. I thank my girlfriend, who encouraged me to follow my interests (to Paris), for

her love and support during this adventure.

93

A. Appendix

A.1. Proofs for the Di�erent Compromise Scenarios

We provide the proofs done in CryptoVerif for the compromise scenarios de�ned in

Section 4.5. The proof for scenario 1 was given and described in detail in Section 4.4 so we

do not repeat it here.

Proof for Scenario 2. From wireguard.AB.ephemeral_A.no_replay_prot.cv.

1 proof {

2 (* In the initiator, distinguish the cases talking to an honest or

3 dishonest responder regarding its longterm public key. *)

4 insert 37 "if S_X_pub = S_r_pub then";

5 SArename E_i_pub_2;

6 (* In the responder, distinguish the cases talking to an honest or

7 dishonest initiator regarding its longterm public key. *)

8 insert 2792 "if S_i_pub_recv_2 = S_i_pub_1 then";

9 (* In the responder, find the initiator session that generated an

10 honest ephemeral key, talking to an honest responder longterm key. *)

11 insert 2727 "find i <= N_init_parties suchthat defined(E_i_pub_4[i]) && ←↩

E_i_pub_recv_2 = E_i_pub_4[i] then";

12 (* In the initiator after receiving the second protocol message from

13 the responder, find the responder session that generated an honest

14 ephemeral key, talking to an honest initiator (here this means both

15 initiator longterm and ephemeral are honest). *)

16 insert 1656 "find j <= N_resp_parties suchthat defined(E_r_pub[j]) && ←↩

E_r_pub_recv_1 = E_r_pub[j] then";

17 insert 179 "find j <= N_resp_parties suchthat defined(E_r_pub[j]) && ←↩

E_r_pub_recv_1 = E_r_pub[j] then";

18

19 crypto rom(rom3_intermediate);

20 crypto rom(rom2);

21 crypto rom(rom1);

22 crypto gdh(exp) S_r_priv_1 E_i_priv_5 S_i_priv_2 E_r_priv_2;

23 crypto split_hashoutput *;

24 success;

25 simplify;

26 crypto int_ctxt(enc) *;

27 success;

28 simplify;

29 crypto ind_cpa(enc) *;

95

A. Appendix

30 success;

31 simplify;

32

33 crypto int_ctxt_corrupt(enc) k_25;

34 success;

35 simplify;

36 crypto ind_cpa(enc) *;

37 success

38 }

Scenario 3. From wireguard.AB.ephemeral_B.no_replay_prot.cv.

1 proof {

2 (* In the initiator, distinguish the cases talking to an honest or

3 dishonest responder regarding its longterm public key. *)

4 insert 37 "if S_X_pub = S_r_pub then";

5 SArename E_i_pub_2;

6 (* In the responder, distinguish the cases talking to an honest or

7 dishonest initiator regarding its longterm public key. *)

8 insert 1248 "if S_i_pub_recv_2 = S_i_pub_1 then";

9 (* In the responder, find the initiator session that generated an

10 honest ephemeral key, talking to an honest responder longterm key. *)

11 insert 1183 "find i <= N_init_parties suchthat defined(E_i_pub_4[i]) && ←↩

E_i_pub_recv_2 = E_i_pub_4[i] then";

12 (* In the initiator after receiving the second protocol message from

13 the responder, find the responder session that generated an honest

14 ephemeral key, talking to an honest initiator (here this means both

15 initiator longterm and ephemeral are honest). *)

16

17 crypto rom(rom3_intermediate);

18 crypto rom(rom2);

19 crypto rom(rom1);

20 crypto gdh(exp) S_r_priv_1 E_i_priv_5 S_i_priv_2 E_r_priv_7;

21 crypto split_hashoutput *;

22 success;

23 simplify;

24 crypto int_ctxt(enc) *;

25 success;

26 simplify;

27 crypto ind_cpa(enc) *;

28 success;

29 simplify;

30

31 (* This covers, on the responder’s side, the case of honest S_i_pub

32 but dishonest E_i_pub in the case of possible corruption of

33 S_i_pub: The attacker can’t produce a valid ciphertext for

34 protocol message 3 (key confirmation) if the key wasn’t

96

A.1. Proofs for the Di�erent Compromise Scenarios

35 compromised, thus the decryption will fail on the responder’s side

36 and the protocol won’t continue. Especially the rcvd3 event will

37 not be triggered. *)

38 crypto int_ctxt_corrupt(enc) T_i_send_12;

39 success;

40 simplify;

41 crypto ind_cpa(enc) *;

42 success

43 }

Scenario 5. From wireguard.AB.only_psk.cv.

1 proof {

2 (* In the initiator, distinguish the cases talking to an honest or

3 dishonest responder regarding its longterm public key. *)

4 insert 32 "if S_X_pub = S_r_pub then";

5 SArename E_i_pub_2;

6 (* In the responder, distinguish the cases talking to an honest or

7 dishonest initiator regarding its longterm public key. *)

8 insert 1245 "if S_i_pub_recv_2 = S_i_pub_1 then";

9 (* In the responder, find the initiator session that generated an

10 honest ephemeral key, talking to an honest responder longterm key. *)

11 insert 1180 "find i <= N_init_parties suchthat defined(E_i_pub_4[i]) && ←↩

E_i_pub_recv_2 = E_i_pub_4[i] then";

12 (* In the initiator after receiving the second protocol message from

13 the responder, find the responder session that generated an honest

14 ephemeral key, talking to an honest initiator (here this means both

15 initiator longterm and ephemeral are honest). *)

16 insert 753 "find j <= N_resp_parties suchthat defined(E_r_pub[j]) && ←↩

E_r_pub_recv_1 = E_r_pub[j] then";

17 insert 174 "find j <= N_resp_parties suchthat defined(E_r_pub[j]) && ←↩

E_r_pub_recv_1 = E_r_pub[j] then";

18

19 crypto rom(rom3_intermediate);

20 crypto rom(rom2);

21 crypto rom(rom1);

22 crypto gdh(exp) S_r_priv_1 E_i_priv_5 S_i_priv_2 E_r_priv_9;

23 crypto split_hashoutput *;

24 success;

25 simplify;

26 crypto int_ctxt(enc) *;

27 success;

28 simplify;

29 crypto ind_cpa(enc) *;

30 success

97

A. Appendix

Scenario 6. From wireguard.AB.no_longterm_compromises.replay_prot.cv.

1 proof {

2 (* In the initiator, distinguish the cases talking to an honest or

3 dishonest responder regarding its longterm public key. *)

4 (* We want to have this case distinction after the check for corruption. *)

5 insert 36 "if S_X_pub = S_r_pub then";

6 SArename E_i_pub_2;

7 (* In the responder, distinguish the cases talking to an honest or

8 dishonest initiator regarding its longterm public key. *)

9 insert 931 "if S_i_pub_recv_2 = S_i_pub_1 then";

10 (* In the responder, find the initiator session that generated an

11 honest ephemeral key, talking to an honest responder longterm key. *)

12 insert 866 "find i <= N_init_parties suchthat defined(E_i_pub_4[i]) && ←↩

E_i_pub_recv_2 = E_i_pub_4[i] then";

13 (* In the initiator after receiving the second protocol message from

14 the responder, find the responder session that generated an honest

15 ephemeral key, talking to an honest initiator (here this means both

16 initiator longterm and ephemeral are honest). *)

17 insert 610 "find j <= N_resp_parties suchthat defined(E_r_pub[j]) && ←↩

E_r_pub_recv_1 = E_r_pub[j] then";

18 insert 190 "find j <= N_resp_parties suchthat defined(E_r_pub[j]) && ←↩

E_r_pub_recv_1 = E_r_pub[j] then";

19

20 crypto rom(rom3_intermediate);

21 crypto rom(rom2);

22 crypto rom(rom1);

23 crypto gdh(exp) S_r_priv_1 E_i_priv_5 S_i_priv_2 E_r_priv_9;

24 crypto split_hashoutput *;

25 success;

26 simplify;

27 crypto int_ctxt(enc) *;

28 success;

29 simplify;

30 crypto ind_cpa(enc) *;

31 success

98

A.2. Advantages to Break Secrecy in Di�erent Compromise Scenarios

A.2. Advantages to Break Secrecy in Di�erent Compromise
Scenarios

We indicate the advantages computed by CryptoVerif without further discussion. The

scenario numbers correspond to the order they were listed in Section 4.5.

Scenario 2.

(24nr + 10ni)Advint−ctxt

AEAD,A(n) + 24nrAdv
ind−cpa

AEAD,A(n) + 24Advcoll−res

HASH,A(n)

+(4ni + 6nr + 12nrom2ni + 2nrom3nr + 45nini + 12nrnr + 3728nrni + 138nrom1ni)/|Z_t|

+(4nrom1 + 8nrom2 + 30nrom3 + 48nrnrom3 + 2nrnrom1 + 18nrnrom2)niAdv
gdh

G,A
(n)

Scenario 3.

(12nr + 8ni)Advint−ctxt

AEAD,A(n) + 92Advcoll−res

HASH,A(n) + (6nr + 4ni)Adv
ind−cpa

AEAD,A(n)

+(24nr + 6ni + 6nrom1ni + 12nrom2ni + 2nrom3nr + 27nini + 494nrnr + 4292nrni + 736nrnrni

+ 3520nrom3nini)/|Z_t|

+(2nrom1 + 6nrnrom3 + 2nrnrom1 + 18nrnrom2 + 4 + 20nrom3 + 6nrom2) · nrAdv
gdh

G,A
(n)

Scenario 4.

(48nr + 12ni)Advint−ctxt

AEAD,A(n) + 24Advcoll−res

HASH,A(n) + 48nrAdv
ind−cpa

AEAD,A(n)

+(2ni + 6nrom1ni + 12nrnr + 26nini + 1428nrni + 392nrom2ni)/|Z_t|

+(2nrom1 + 18nrnrom2 + 2nrnrom1 + 6nrom2)nrniAdv
gdh

G,A
(n)

+2nrom3/|psk_t|

Scenario 6.

(20nr + 8ni)Advint−ctxt

AEAD,A(n) + 64Advcoll−res

HASH,A(n) + (6nr + 4ni)Adv
ind−cpa

AEAD,A(n)

+(264nrom3nini + 18nrnrni + 18nr + 2ni + 6nrom1ni + 12nrom2ni + 4nrom3nr + 302nrnr

+ 27nini + 2464nrni)/|Z_t|

+(2nrom1 + 6nrnrom3 + 2nrnrom1 + 18nrnrom2 + 4 + 20nrom3 + 6nrom2)Adv
gdh

G,A
(n)

A.3. Running the Proofs in CryptoVerif

The CryptoVerif proof assistant can be downloaded from http://prosecco.gforge.inria.

fr/personal/bblanche/cryptoverif/. The models presented in this thesis have been

tested to work with the most recent version 2.00. Our work can be reproduced by using

the �le runcv from the archive of our code. Paths de�ned within the �le probably need to

be adapted to the local system.

The following is the output of the runcv script that we got on our test machine (personal

laptop), including running times and memory usage.

99

http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/
http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/

A. Appendix

1 wireguard.AB.only_psk

2 ../cryptoverif-dev/xtime ../cryptoverif-dev/cryptoverif -lib wireguard -←↩

oproof wireguard.AB.only_psk.cvres wireguard.AB.only_psk.cv > wireguard.←↩

AB.only_psk.out

3 All queries proved.

4 189.359s (user 188.458s + system 0.900s), max rss 9647808K

5

6 wireguard.AB.longterm_compromises.no_replay_prot

7 ../cryptoverif-dev/xtime ../cryptoverif-dev/cryptoverif -lib wireguard -←↩

oproof wireguard.AB.longterm_compromises.no_replay_prot.cvres wireguard.←↩

AB.longterm_compromises.no_replay_prot.cv > wireguard.AB.←↩

longterm_compromises.no_replay_prot.out

8 All queries proved.

9 306.548s (user 306.007s + system 0.541s), max rss 4180016K

10

11 wireguard.AB.longterm_compromises.replay_prot

12 ../cryptoverif-dev/xtime ../cryptoverif-dev/cryptoverif -lib wireguard -←↩

oproof wireguard.AB.longterm_compromises.replay_prot.cvres wireguard.AB.←↩

longterm_compromises.replay_prot.cv > wireguard.AB.longterm_compromises.←↩

replay_prot.out

13 All queries proved.

14 934.592s (user 933.815s + system 0.777s), max rss 4181008K

15

16 wireguard.AB.no_longterm_compromises.no_replay_prot

17 ../cryptoverif-dev/xtime ../cryptoverif-dev/cryptoverif -lib wireguard -←↩

oproof wireguard.AB.no_longterm_compromises.no_replay_prot.cvres ←↩

wireguard.AB.no_longterm_compromises.no_replay_prot.cv

18 > wireguard.AB.no_longterm_compromises.no_replay_prot.out

19 All queries proved.

20 156.486s (user 156.146s + system 0.340s), max rss 1595600K

21

22 wireguard.AB.no_longterm_compromises.replay_prot

23 ../cryptoverif-dev/xtime ../cryptoverif-dev/cryptoverif -lib wireguard -←↩

oproof wireguard.AB.no_longterm_compromises.replay_prot.cvres wireguard.←↩

AB.no_longterm_compromises.replay_prot.cv > wireguard.AB.←↩

no_longterm_compromises.replay_prot.out

24 All queries proved.

25 336.226s (user 335.901s + system 0.325s), max rss 1596240K

26

27 wireguard.AB.ephemeral_A.no_replay_prot

28 ../cryptoverif-dev/xtime ../cryptoverif-dev/cryptoverif -lib wireguard -←↩

oproof wireguard.AB.ephemeral_A.no_replay_prot.cvres wireguard.AB.←↩

ephemeral_A.no_replay_prot.cv > wireguard.AB.ephemeral_A.no_replay_prot.←↩

out

29 All queries proved.

30 285.147s (user 284.615s + system 0.531s), max rss 4181216K

31

100

A.3. Running the Proofs in CryptoVerif

32 wireguard.AB.ephemeral_B.no_replay_prot

33 ../cryptoverif-dev/xtime ../cryptoverif-dev/cryptoverif -lib wireguard -←↩

oproof wireguard.AB.ephemeral_B.no_replay_prot.cvres wireguard.AB.←↩

ephemeral_B.no_replay_prot.cv > wireguard.AB.ephemeral_B.no_replay_prot.←↩

out

34 All queries proved.

101

	Abstract
	Zusammenfassung
	Introduction
	Definitions of Cryptographic Primitives and Properties of Key Exchange Protocols
	Cryptographic Primitives
	Authenticated Key Exchange Protocols
	Security Properties of Authenticated Key Exchange

	The WireGuard Virtual Private Network Protocol
	The Noise Protocol Framework
	Protocol Messages and Key Derivation

	Proofs of Cryptographic Properties with CryptoVerif
	Introduction to Proofs Based on Sequences of Games
	Introduction to CryptoVerif
	Syntax and Semantics
	How CryptoVerif Checks if Queries are Satisfied

	A Security Model for WireGuard in CryptoVerif
	Modelling the Cryptographic Primitives
	Modelling the Protocol Messages, Timestamps and Nonces
	Execution Environment
	Trivial Attacks, Session Cleanness, and Partnering Definition
	Security Queries

	Description of the Proof
	Results and Discussion of the Model

	Conclusion and Future Work
	Bibliography
	Acknowledgements
	Appendix
	Proofs for the Different Compromise Scenarios
	Advantages to Break Secrecy in Different Compromise Scenarios
	Running the Proofs in CryptoVerif

